login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A107653
Expansion of q / (chi(q) * chi(q^3))^6 in powers of q where chi() is a Ramanujan theta function.
4
1, -6, 21, -68, 198, -510, 1248, -2904, 6393, -13604, 28044, -55956, 108982, -207552, 386622, -707216, 1271970, -2250582, 3925780, -6757272, 11483232, -19290824, 32057352, -52722744, 85884503, -138644292, 221885805, -352241792, 554892894
OFFSET
1,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Convolution inverse of A186829. - Michael Somos, Feb 27 2011
Expansion of (eta(q) * eta(q^3) * eta(q^4) * eta(q^12) / (eta(q^2) * eta(q^6))^2)^6 in powers of q.
Euler transform of period 12 sequence [-6, 6, -12, 0, -6, 12, -6, 0, -12, 6, -6, 0, ...]. - Michael Somos, Jun 13 2005
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = f(t) where q = exp(2 Pi i t). - Michael Somos, Feb 27 2011
G.f.: x * (Product_{k>0} ((1 + x^(2*k)) * (1 + x^(6*k))) / ((1 + x^k) * (1 + x^(3*k))))^6 = x * (Product_{k>0} (1 + x^(2*k-1)) * (1 + x^(6*k-3)))^-6.
a(n) = -(-1)^n * A123653(n). - Michael Somos, Feb 27 2011
EXAMPLE
G.f. = q - 6*q^2 + 21*q^3 - 68*q^4 + 198*q^5 - 510*q^6 + 1248*q^7 + ...
MATHEMATICA
QP = QPochhammer; s = (QP[q]*QP[q^3]*QP[q^4]*(QP[q^12]/(QP[q^2]*QP[q^6])^2 ))^6 + O[q]^30; CoefficientList[s, q] (* Jean-François Alcover, Nov 14 2015, adapted from PARI *)
a[n_]:= SeriesCoefficient[q/( QPochhammer[-q, q^2]* QPochhammer[-q^3, q^6])^6, {q, 0, n}]; Table[a[n], {n, 1, 50}] (* G. C. Greubel, Dec 09 2017 *)
PROG
(PARI) {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^3 + A) * eta(x^4 + A) * eta(x^12 + A) / (eta(x^2 + A)^2 * eta(x^6 + A)^2))^6, n))}; /* Michael Somos, Jun 13 2005 */
CROSSREFS
Sequence in context: A119103 A180795 A306089 * A123653 A375297 A364636
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Jun 07 2005
EXTENSIONS
Revised by Michael Somos, Jun 12 2005
STATUS
approved