login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A306085
Primes which have an even decimal digit and remain prime after all even digits are removed.
3
23, 43, 47, 67, 83, 101, 103, 107, 109, 127, 149, 163, 167, 181, 211, 223, 227, 263, 271, 283, 307, 347, 367, 419, 431, 443, 463, 467, 479, 487, 503, 509, 523, 563, 569, 607, 613, 617, 619, 631, 643, 647, 653, 659, 673, 683, 701, 709, 743, 761, 769, 811, 823, 827, 853, 859, 863, 883, 887, 907
OFFSET
1,1
COMMENTS
A proper subset of A306084.
LINKS
EXAMPLE
101 is a member of the sequence because it has an even digit, 0, and with its removal, the resulting number 11 is a prime.
MAPLE
filter:= proc(n) local L, Lp;
if not isprime(n) then return false fi;
L:= convert(n, base, 10);
Lp:= subs([0=NULL, 2=NULL, 4=NULL, 6=NULL, 8=NULL], L);
if L = Lp then return false fi;
isprime(add(Lp[i]*10^(i-1), i=1..nops(Lp)))
end proc:
select(filter, [seq(n, n=11..1000, 2)]); # Robert Israel, Jul 04 2018
MATHEMATICA
fQ[n_] := Block[{id = IntegerDigits@ n}, Select[id, EvenQ] != {} && PrimeQ[ FromDigits[ Select[id, OddQ]] ]]; Select[Prime@ Range@ 160, fQ]
PROG
(PARI) isok(p) = isprime(p) && (d=digits(p)) && #select(x->!(x%2), d) && isprime(fromdigits(select(x->(x % 2), d))); \\ Michel Marcus, Jun 22 2018
CROSSREFS
Sequence in context: A304390 A309533 A331342 * A037137 A340136 A154530
KEYWORD
nonn,base
AUTHOR
STATUS
approved