login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A340136
Primes p1 such that, with p2, p3, p4 the next three primes, p1*p2+p3*p4+p1, p1*p2+p3*p4+p2, p1*p2+p3*p4+p3 and p1*p2+p3*p4+p4 are all composite.
1
23, 43, 53, 73, 83, 101, 127, 131, 139, 151, 157, 179, 181, 229, 281, 283, 293, 307, 311, 313, 349, 353, 359, 389, 397, 401, 409, 419, 443, 449, 457, 461, 463, 487, 491, 509, 521, 563, 569, 571, 601, 617, 631, 641, 643, 653, 673, 709, 739, 757, 769, 787, 797, 809, 827, 829, 839, 857, 863, 877
OFFSET
1,1
LINKS
EXAMPLE
a(3) = 53 is a term because with p1 = 53, p2 = 59, p3 = 61, p4 = 67, we have p1*p2+p3*p4+p1 = 7267, p1*p2+p3*p4+p2 = 7273, p1*p2+p3*p4+p3 = 7275, p1*p2+p3*p4+p4 = 7281, all composite.
MAPLE
p2:=2: p3:= 3: p4:= 5: count:= 0: R:= NULL:
while count < 100 do
p1:= p2; p2:= p3; p3:= p4; p4:= nextprime(p4);
w:= p1*p2+p3*p4;
if not ormap(t -> isprime(t+w), [p1, p2, p3, p4]) then
count:= count+1; R:= R, p1
fi
od:
R;
MATHEMATICA
acQ[{a_, b_, c_, d_}]:=AllTrue[a*b+c*d+{a, b, c, d}, CompositeQ]; Select[ Partition[ Prime[ Range[200]], 4, 1], acQ][[All, 1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jul 05 2021 *)
PROG
(PARI) isA340136(p1) = if(!isprime(p1), 0, my(p2=nextprime(1+p1), p3=nextprime(1+p2), p4=nextprime(1+p3), x=((p1*p2)+(p3*p4))); !isprime(x+p1)&&!isprime(x+p2)&&!isprime(x+p3)&&!isprime(x+p4)); \\ Antti Karttunen, Dec 29 2020
CROSSREFS
Cf. A340126.
Sequence in context: A331342 A306085 A037137 * A154530 A156979 A281226
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Dec 29 2020
STATUS
approved