login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A340133
The sequence lists the least prime numbers, in ascending order, such that each of them can be written, in a unique way, in the form x^2 + h*y^2, where x, y are natural numbers, while h takes all the values of the sequences A000926 (Idoneal numbers) and A003173 (Heegner numbers). See example.
0
3230498881, 5086789009, 6956459689, 7260636769, 12387462649, 13125124321, 14049841129, 14247509329, 14310889849, 15871864849, 16573389361, 17502040609, 17768627809, 22042168201, 22621870441, 22957650769, 23018043409, 23819076121, 25228204849, 26585136601
OFFSET
1,1
COMMENTS
First number in this sequence is equal to least common number of sequences A340055 and A340132.
The sequence is obtained using Lista(m), with m=266*10^8, see section PROG. It's possible increase m to discover more terms of the sequence. It's also possible to extend the sequences A340055 and A340132 to check their common numbers.
EXAMPLE
3230498881 = 2465^2+A000926(1)*56784^2
= 56609^2+A000926(2)*3600^2
= 35927^2+A000926(3)*25428^2
= ...
= 56791^2+A003173(9)*180^2
= ...
= 35743^2+A000926(65)*1028^2
PROG
(PARI) Union()={ my (v); v=(select(m->!#select(k->k<>2, quadclassunit(-4*m).cyc), [1..1848])); for(k=3, 41, d=4*k-1; if(isprime(d) && qfbclassno(-d)==1, v=concat(v, d))); return(v); }
isok(p, u)={my (i, s, n=matsize(u)[2], t=0); for(i=1, n, s=kronecker(-u[i], p); if(s==1, t++, break)); if(t==n, t=0; for(i=1, n, s=qfbsolve(Qfb(1, 0, u[i]), p); if(s==[], break, t++))); if(t==n, 1, 0)}
Primo(p, m)={my(u=Union()); while(p<m, p=nextprime(p+1); if(isok(p, u), return(p))); return(0)}
Lista(m)={ my (q, r=323*10^7, v=[]); q=nextprime(r); m=precprime(m); while(q<m, r=q; q=Primo(r, m); if(q>r, v=concat(v, q), q=m)); return(v); }
CROSSREFS
KEYWORD
nonn
AUTHOR
Marco Frigerio, Dec 29 2020
STATUS
approved