login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A340055
Primes that can be written in the form j^2 + h*k^2, where j and k are positive integers, for every h in A003173 (Heegner numbers).
1
2333017, 5995081, 11414209, 11941273, 12953593, 14823769, 18550849, 19231969, 23582161, 26603977, 27336457, 29236729, 32630161, 35452033, 35836249, 37895089, 40411177, 42911257, 46007329, 46087057, 49680577, 49825609, 52046593, 52208017, 55624297, 63257401
OFFSET
1,1
COMMENTS
The first term in this sequence is equal to last term in A338087.
The sequence is obtained using Lista(m), with m=633*10^5, see section PROG. One can increase m to obtain further terms of the sequence.
EXAMPLE
2333017 = 989^2 + A003173(1)*1164^2
= 1493^2 + A003173(2)*228^2
= 1093^2 + A003173(3)*616^2
= 685^2 + A003173(4)*516^2
= 1349^2 + A003173(5)*216^2
= 179^2 + A003173(6)*348^2
= 1293^2 + A003173(7)*124^2
= 1395^2 + A003173(8)*76^2
= 1485^2 + A003173(9)*28^2.
PROG
(PARI) Heegner()={my (d, k, v); v=vector(3, i, i); for(k=2, 41, d=4*k-1; if(isprime(d) && qfbclassno(-d)==1, v=concat(v, d))); return(v); }
isok(p, u)={my (i, s, n=matsize(u)[2], t=0); for(i=1, n, s=kronecker(-u[i], p); if(s==1, t++, break)); if(t==n, t=0; for(i=1, n, s=qfbsolve(Qfb(1, 0, u[i]), p); if(s==[], break, t++))); if(t==n, 1, 0)}
Primo(p, m)={my(u=Heegner()); while(p<m, p=nextprime(p+1); if(isok(p, u), return(p))); return(0)}
Lista(m)={my (q, r=233*10^4, v=[]); q=nextprime(r); m=precprime(m); while(q<m, r=q; q=Primo(r, m); if(q>r, v=concat(v, q), q=m)); return(v); }
CROSSREFS
Sequence in context: A154676 A250926 A278200 * A246226 A204944 A184771
KEYWORD
nonn
AUTHOR
Marco Frigerio, Dec 29 2020
STATUS
approved