login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A154676
Numbers n = 103*k^2 such that (n-1,n+1) is a twin prime pair (thus k = 6*m).
6
2317500, 12047292, 26163648, 43250112, 47347452, 61704828, 168228252, 333720000, 351755712, 426127068, 513127872, 840143808, 979638768, 998790588, 1089276912, 1330434108, 1357220700, 1388809152, 1694467008, 1927570428, 1986835392, 2035992348, 2136108348, 2858437872, 3070594800, 3241626300, 3903322608
OFFSET
1,1
COMMENTS
Original definition: Averages of twin prime pairs n such that n*103 and n/103 are squares.
All terms are of the form 3708*k^2. - Zak Seidov, Jan 15 2009
Obviously n*103 is a square iff n/103 is a square, say k^2. But n=103k^2 can't be the average of a twin prime pair unless it's a multiple of 6, thus k=6m and n=103*36*m^2. - M. F. Hasler, Apr 11 2009
LINKS
MAPLE
select(t -> isprime(t+1) and isprime(t-1), [seq(3708*i^2, i=1..2000)]); # Robert Israel, Mar 13 2019
MATHEMATICA
lst={}; Do[If[PrimeQ[n-1]&&PrimeQ[n+1], s=(n*103)^(1/2); If[Floor[s]==s, AppendTo[lst, n]]], {n, 9!, 2*11!, 6}]; lst (*...and/or...*) lst={}; Do[If[PrimeQ[n-1]&&PrimeQ[n+1], s=(n/103)^(1/2); If[Floor[s]==s, AppendTo[lst, n]]], {n, 9!, 2*11!, 6}]; lst
PROG
(PARI) forstep(k=0, 1e4, 6, isprime(k^2*103+1) & isprime(k^2*103-1) & print1(k^2*103, ", ")) \\ M. F. Hasler, Apr 11 2009
CROSSREFS
KEYWORD
nonn,less
AUTHOR
EXTENSIONS
Edited and extended by M. F. Hasler, Apr 11 2009
STATUS
approved