OFFSET
1,1
COMMENTS
Original definition: Averages of twin prime pairs n such that n*103 and n/103 are squares.
All terms are of the form 3708*k^2. - Zak Seidov, Jan 15 2009
Obviously n*103 is a square iff n/103 is a square, say k^2. But n=103k^2 can't be the average of a twin prime pair unless it's a multiple of 6, thus k=6m and n=103*36*m^2. - M. F. Hasler, Apr 11 2009
LINKS
Robert Israel, Table of n, a(n) for n = 1..10000
MAPLE
select(t -> isprime(t+1) and isprime(t-1), [seq(3708*i^2, i=1..2000)]); # Robert Israel, Mar 13 2019
MATHEMATICA
lst={}; Do[If[PrimeQ[n-1]&&PrimeQ[n+1], s=(n*103)^(1/2); If[Floor[s]==s, AppendTo[lst, n]]], {n, 9!, 2*11!, 6}]; lst (*...and/or...*) lst={}; Do[If[PrimeQ[n-1]&&PrimeQ[n+1], s=(n/103)^(1/2); If[Floor[s]==s, AppendTo[lst, n]]], {n, 9!, 2*11!, 6}]; lst
PROG
(PARI) forstep(k=0, 1e4, 6, isprime(k^2*103+1) & isprime(k^2*103-1) & print1(k^2*103, ", ")) \\ M. F. Hasler, Apr 11 2009
CROSSREFS
KEYWORD
nonn,less
AUTHOR
Vladimir Joseph Stephan Orlovsky, Jan 14 2009
EXTENSIONS
Edited and extended by M. F. Hasler, Apr 11 2009
STATUS
approved