Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Mar 13 2019 23:40:43
%S 2317500,12047292,26163648,43250112,47347452,61704828,168228252,
%T 333720000,351755712,426127068,513127872,840143808,979638768,
%U 998790588,1089276912,1330434108,1357220700,1388809152,1694467008,1927570428,1986835392,2035992348,2136108348,2858437872,3070594800,3241626300,3903322608
%N Numbers n = 103*k^2 such that (n-1,n+1) is a twin prime pair (thus k = 6*m).
%C Original definition: Averages of twin prime pairs n such that n*103 and n/103 are squares.
%C All terms are of the form 3708*k^2. - _Zak Seidov_, Jan 15 2009
%C Obviously n*103 is a square iff n/103 is a square, say k^2. But n=103k^2 can't be the average of a twin prime pair unless it's a multiple of 6, thus k=6m and n=103*36*m^2. - _M. F. Hasler_, Apr 11 2009
%H Robert Israel, <a href="/A154676/b154676.txt">Table of n, a(n) for n = 1..10000</a>
%p select(t -> isprime(t+1) and isprime(t-1), [seq(3708*i^2, i=1..2000)]); # _Robert Israel_, Mar 13 2019
%t lst={}; Do[If[PrimeQ[n-1]&&PrimeQ[n+1],s=(n*103)^(1/2); If[Floor[s]==s,AppendTo[lst,n]]],{n,9!,2*11!,6}]; lst (*...and/or...*) lst={}; Do[If[PrimeQ[n-1]&&PrimeQ[n+1],s=(n/103)^(1/2); If[Floor[s]==s,AppendTo[lst,n]]],{n,9!,2*11!,6}]; lst
%o (PARI) forstep(k=0,1e4,6, isprime(k^2*103+1) & isprime(k^2*103-1) & print1(k^2*103,",")) \\ _M. F. Hasler_, Apr 11 2009
%Y Cf. A154670, A154671, A154672, A154673, A154674, A154675.
%K nonn,less
%O 1,1
%A _Vladimir Joseph Stephan Orlovsky_, Jan 14 2009
%E Edited and extended by _M. F. Hasler_, Apr 11 2009