OFFSET
1,1
COMMENTS
Original definition: Averages of twin prime pairs n such that n*5 and n/5 are squares.
Obviously, n*5 is a square iff n/5 is a square, say k^2. But n=5k^2 can't be the average of a twin prime pair unless it's a multiple of 6, thus k=6m and n=5*36*m^2. - M. F. Hasler, Apr 11 2009
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000
FORMULA
MATHEMATICA
lst={}; Do[If[PrimeQ[n-1]&&PrimeQ[n+1], s=(n*5)^(1/2); If[Floor[s]==s, AppendTo[lst, n]]], {n, 6, 10!, 6}]; lst (*...and/or...*) lst={}; Do[If[PrimeQ[n-1]&&PrimeQ[n+1], s=(n/5)^(1/2); If[Floor[s]==s, AppendTo[lst, n]]], {n, 6, 10!, 6}]; lst
PROG
(PARI) forstep(k=0, 1e4, 6, isprime(k^2*5+1) & isprime(k^2*5-1) & print1(k^2*5, ", ")) \\ M. F. Hasler, Apr 11 2009
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladimir Joseph Stephan Orlovsky, Jan 13 2009
EXTENSIONS
Edited and extended by M. F. Hasler, Apr 11 2009
STATUS
approved