The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A154672 Numbers n = 5*k^2 such that n - 1 and n + 1 are (twin) primes (thus k=6*m). 6
 180, 1620, 8820, 35280, 87120, 151380, 302580, 380880, 691920, 737280, 808020, 1393920, 5020020, 5767380, 7712820, 9604980, 10281780, 11160180, 12450420, 12736080, 14723280, 15138000, 17186580, 17860500, 18663120, 18779220, 19129680, 21300480 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Original definition: Averages of twin prime pairs n such that n*5 and n/5 are squares. Obviously, n*5 is a square iff n/5 is a square, say k^2. But n=5k^2 can't be the average of a twin prime pair unless it's a multiple of 6, thus k=6m and n=5*36*m^2. - M. F. Hasler, Apr 11 2009 LINKS Amiram Eldar, Table of n, a(n) for n = 1..10000 FORMULA A154672 = 5*A000290 intersect A014574 = 180*A000290 intersect A014574. - M. F. Hasler, Apr 11 2009 MATHEMATICA lst={}; Do[If[PrimeQ[n-1]&&PrimeQ[n+1], s=(n*5)^(1/2); If[Floor[s]==s, AppendTo[lst, n]]], {n, 6, 10!, 6}]; lst (*...and/or...*) lst={}; Do[If[PrimeQ[n-1]&&PrimeQ[n+1], s=(n/5)^(1/2); If[Floor[s]==s, AppendTo[lst, n]]], {n, 6, 10!, 6}]; lst PROG (PARI) forstep(k=0, 1e4, 6, isprime(k^2*5+1) & isprime(k^2*5-1) & print1(k^2*5, ", ")) \\ M. F. Hasler, Apr 11 2009 CROSSREFS Cf. A000290, A014574, A154670, A154671, A154673, A154674, A154675, A154676. Sequence in context: A225932 A081380 A115184 * A211556 A184225 A099106 Adjacent sequences:  A154669 A154670 A154671 * A154673 A154674 A154675 KEYWORD nonn AUTHOR Vladimir Joseph Stephan Orlovsky, Jan 13 2009 EXTENSIONS Edited and extended by M. F. Hasler, Apr 11 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 21 19:42 EDT 2022. Contains 353929 sequences. (Running on oeis4.)