login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A154677
G.f. satisfies: A(x/A(x)) = G(x) where G(x) = 1 + x*G(x)^2 is the g.f. of A000108 (Catalan numbers).
5
1, 1, 3, 13, 70, 440, 3116, 24274, 204407, 1836339, 17425275, 173329307, 1796783304, 19323703019, 214843877103, 2462522274426, 29032815570544, 351447240945518, 4361579736404011, 55424256247911490, 720399315622779670, 9569215299494074698, 129799982362958621827
OFFSET
0,3
LINKS
FORMULA
G.f. satisfies: A( (x-x^2)/A(x-x^2) ) = 1/(1-x).
G.f. satisfies: A( (x/(1+x)^2)/A(x/(1+x)^2) ) = 1 + x.
G.f. satisfies: A(x) = 1 + A(x)^2*Series_Reversion(x/A(x)). - Paul D. Hanna, Dec 06 2009
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 13*x^3 + 70*x^4 + 440*x^5 + ... where
A(x/A(x)) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 132*x^6 + ...
x/A(x) = x - x^2 - 2*x^3 - 8*x^4 - 43*x^5 - 277*x^6 - 2026*x^7 - ...
PROG
(PARI) {a(n)=local(A=1+x, F=sum(k=0, n, binomial(2*k+1, k)/(2*k+1)*x^k)+x*O(x^n)); for(i=0, n, A=subst(F, x, serreverse(x/(A+x*O(x^n))))); polcoeff(A, n)}
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+A^2*serreverse(x/(A+x*O(x^n)))); polcoeff(A, n)} \\ Paul D. Hanna, Dec 06 2009
CROSSREFS
Cf. A000108.
Cf. variants: A168448, A168478. - Paul D. Hanna, Dec 06 2009
Sequence in context: A059726 A274379 A192209 * A121586 A024337 A001495
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 14 2009
STATUS
approved