login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A168478
G.f. satisfies: A(x/A(x)^3) = G(x) where G(x) = 1 + x*G(x)^3 is the g.f. of A001764.
4
1, 1, 6, 60, 803, 13071, 244917, 5101603, 115451307, 2794682082, 71579132742, 1924722618873, 54022011952266, 1575777019075715, 47606721776494443, 1485688929610479498, 47790055655273649449, 1581727833458617151379
OFFSET
0,3
FORMULA
G.f. satisfies: A(x) = 1 + A(x)^3*Series_Reversion[x/A(x)^3].
G.f. satisfies: A( (x*(1-x)^2)/A(x*(1-x)^2)^3 ) = 1/(1-x).
G.f. satisfies: A( (x/(1+x)^3)/A(x/(1+x)^3)^3 ) = 1 + x.
EXAMPLE
G.f.: A(x) = 1 + x + 6*x^2 + 60*x^3 + 803*x^4 + 13071*x^5 +...
A(x/A(x)^3) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 + 1428*x^6 +...+ A001764(n)*x^n +...
PROG
(PARI) {a(n)=local(A=1+x, F=sum(k=0, n, binomial(3*k+1, k)/(3*k+1)*x^k)+x*O(x^n)); for(i=0, n, A=subst(F, x, serreverse(x/(A+x*O(x^n))^3))); polcoeff(A, n)}
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+A^3*serreverse(x/(A+x*O(x^n))^3)); polcoeff(A, n)}
CROSSREFS
Cf. A168479 (cube), A168448 (variant), A001764.
Sequence in context: A120973 A259606 A302102 * A101470 A367472 A375721
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 06 2009
STATUS
approved