The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A168448 G.f. satisfies: A(x/A(x)^2) = C(x) where C(x) = 1 + x*C(x)^2 is the g.f. of the Catalan numbers (A000108). 5
 1, 1, 4, 26, 226, 2395, 29278, 398499, 5899534, 93507783, 1569405110, 27672405800, 509622262860, 9759305238932, 193673399146066, 3972141366536794, 84010899306559470, 1829057795368804875, 40931310532585505770, 940322157062673670051, 22152626055397162566438 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Table of n, a(n) for n=0..20. FORMULA G.f. satisfies: A(x) = 1 + A(x)^2*Series_Reversion[x/A(x)^2]. G.f. satisfies: A( (x-x^2)/A(x-x^2)^2 ) = 1/(1-x). G.f. satisfies: A( (x/(1+x)^2)/A(x/(1+x)^2)^2 ) = 1 + x. EXAMPLE G.f.: A(x) = 1 + x + 4*x^2 + 26*x^3 + 226*x^4 + 2395*x^5 +... A(x/A(x)^2) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 132*x^6 +... PROG (PARI) {a(n)=local(A=1+x, F=sum(k=0, n, binomial(2*k+1, k)/(2*k+1)*x^k)+x*O(x^n)); for(i=0, n, A=subst(F, x, serreverse(x/(A+x*O(x^n))^2))); polcoeff(A, n)} (PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+A^2*serreverse(x/(A+x*O(x^n))^2)); polcoeff(A, n)} for(n=0, 25, print1(a(n), ", ")) CROSSREFS Cf. A154677, A168449. Sequence in context: A245768 A152407 A291847 * A105616 A293915 A107879 Adjacent sequences: A168445 A168446 A168447 * A168449 A168450 A168451 KEYWORD nonn AUTHOR Paul D. Hanna, Dec 06 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 29 23:48 EDT 2023. Contains 365781 sequences. (Running on oeis4.)