login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A168451
Self-convolution of A004304, where A004304(n) is the number of planar tree-rooted maps with n edges.
5
1, 4, 8, 20, 84, 456, 2860, 19708, 145120, 1122680, 9023784, 74777248, 635292016, 5510485600, 48644137764, 435920025116, 3957758805776, 36345636909032, 337159090063880, 3155827384249824, 29776934546342464, 283001546964599248
OFFSET
0,2
LINKS
FORMULA
G.f.: A(x) = x/Series_Reversion(x*F(x)^2) where F(x) = g.f. of A005568, where A005568(n) is the product of two successive Catalan numbers C(n)*C(n+1).
G.f.: A(x) = F(x/A(x))^2 where A(x*F(x)^2) = F(x)^2 where F(x) = g.f. of A005568.
EXAMPLE
G.f.: A(x) = 1 + 4*x + 8*x^2 + 20*x^3 + 84*x^4 + 456*x^5 + 2860*x^6 +...
A(x)^(1/2) = 1 + 2*x + 2*x^2 + 6*x^3 + 28*x^4 + 160*x^5 + 1036*x^6 +...+ A004304(n)*x^n +...
G.f. satisfies: A(x*F(x)^2) = F(x)^2 where F(x) = g.f. of A005568:
F(x) = 1 + 2*x + 10*x^2 + 70*x^3 + 588*x^4 + 5544*x^5 + 56628*x^6 +...+ A000108(n)*A000108(n+1)*x^n +...
F(x)^2 = 1 + 4*x + 24*x^2 + 180*x^3 + 1556*x^4 + 14840*x^5 + 152092*x^6 +...+ A168452(n)*x^n +...
PROG
(PARI) {a(n)=local(C_2=vector(n+1, m, (binomial(2*m-2, m-1)/m)*(binomial(2*m, m)/(m+1)))); polcoeff((x/serreverse(x*Ser(C_2)^2)), n)}
CROSSREFS
Sequence in context: A187010 A240149 A086912 * A000585 A209451 A102559
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 26 2009
STATUS
approved