Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #4 Jun 14 2018 09:54:39
%S 1,4,8,20,84,456,2860,19708,145120,1122680,9023784,74777248,635292016,
%T 5510485600,48644137764,435920025116,3957758805776,36345636909032,
%U 337159090063880,3155827384249824,29776934546342464,283001546964599248
%N Self-convolution of A004304, where A004304(n) is the number of planar tree-rooted maps with n edges.
%H Vaclav Kotesovec, <a href="/A168451/b168451.txt">Table of n, a(n) for n = 0..840</a>
%F G.f.: A(x) = x/Series_Reversion(x*F(x)^2) where F(x) = g.f. of A005568, where A005568(n) is the product of two successive Catalan numbers C(n)*C(n+1).
%F G.f.: A(x) = F(x/A(x))^2 where A(x*F(x)^2) = F(x)^2 where F(x) = g.f. of A005568.
%e G.f.: A(x) = 1 + 4*x + 8*x^2 + 20*x^3 + 84*x^4 + 456*x^5 + 2860*x^6 +...
%e A(x)^(1/2) = 1 + 2*x + 2*x^2 + 6*x^3 + 28*x^4 + 160*x^5 + 1036*x^6 +...+ A004304(n)*x^n +...
%e G.f. satisfies: A(x*F(x)^2) = F(x)^2 where F(x) = g.f. of A005568:
%e F(x) = 1 + 2*x + 10*x^2 + 70*x^3 + 588*x^4 + 5544*x^5 + 56628*x^6 +...+ A000108(n)*A000108(n+1)*x^n +...
%e F(x)^2 = 1 + 4*x + 24*x^2 + 180*x^3 + 1556*x^4 + 14840*x^5 + 152092*x^6 +...+ A168452(n)*x^n +...
%o (PARI) {a(n)=local(C_2=vector(n+1,m,(binomial(2*m-2,m-1)/m)*(binomial(2*m,m)/(m+1))));polcoeff((x/serreverse(x*Ser(C_2)^2)),n)}
%Y Cf. A168452, A004304, A005568, A000108, variant: A168357.
%K nonn
%O 0,2
%A _Paul D. Hanna_, Nov 26 2009