login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A168445
Number of compositions a(1),...,a(k) of n, for some k, such that a(i+1) <= a(i) + 1 for 1 <= i < k and a(1) <= a(k) + 1.
2
1, 2, 4, 6, 11, 18, 31, 52, 91, 155, 268, 464, 802, 1390, 2411, 4178, 7249, 12578, 21823, 37870, 65724, 114061, 197960, 343578, 596317, 1034983, 1796359, 3117837, 5411478, 9392460, 16302081, 28294850, 49110242, 85238716, 147945552, 256783448, 445689300
OFFSET
1,2
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge, 2003, p. 381.
LINKS
FORMULA
a(n) ~ c / r^n, where r = A347901 = 0.576148769142756602297868573719938782354724663118974... is the lowest root of the equation Sum_{k>=0} (-1)^k * r^(k^2) / QPochhammer(r, r, k) = 0 and c = 0.6149126319329581124890112676009720339906790088212712130894... - Vaclav Kotesovec, May 01 2014, updated Sep 09 2020
MAPLE
b:= proc(n, r, f) option remember; `if`(n=0, `if`(f-1<=r, 1, 0),
add(b(n-i, i, f), i=1..min(r+1, n)))
end:
a:= n-> add(b(n-i, i, i), i=1..n):
seq(a(n), n=1..40); # Alois P. Heinz, Dec 15 2009
MATHEMATICA
b[n_, r_, f_] := b[n, r, f] = If[n == 0, If[f - 1 <= r, 1, 0], Sum[b[n - i, i, f], {i, 1, Min [r + 1, n]}]];
a[n_] := Sum[b[n - i, i, i], {i, 1, n}];
Array[a, 40] (* Jean-François Alcover, Nov 10 2020, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A026658 A138688 A131298 * A328669 A185192 A007053
KEYWORD
nonn
AUTHOR
Vladeta Jovovic, Nov 25 2009
EXTENSIONS
More terms from Alois P. Heinz, Dec 15 2009
STATUS
approved