login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A168443
Triangle, T(n,k) = number of compositions a(1),...,a(k) of n, such that a(i+1) <= a(i) + 1 for 1 <= i < k.
2
1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 3, 4, 4, 1, 1, 3, 6, 7, 5, 1, 1, 4, 7, 11, 11, 6, 1, 1, 4, 9, 15, 19, 16, 7, 1, 1, 5, 11, 19, 29, 31, 22, 8, 1, 1, 5, 13, 25, 39, 52, 48, 29, 9, 1, 1, 6, 15, 30, 53, 76, 88, 71, 37, 10, 1, 1, 6, 18, 37, 67, 107, 140, 142, 101, 46, 11, 1, 1, 7, 20, 44, 84, 143, 207, 245, 220, 139, 56, 12, 1
OFFSET
1,5
LINKS
EXAMPLE
Triangle T(n,k) begins:
1;
1, 1;
1, 2, 1;
1, 2, 3, 1;
1, 3, 4, 4, 1;
1, 3, 6, 7, 5, 1;
1, 4, 7, 11, 11, 6, 1;
1, 4, 9, 15, 19, 16, 7, 1;
...
MAPLE
b:= proc(n, k) option remember; expand(`if`(n=0, 1,
x*add(b(n-j, j), j=1..min(n, k+1))))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(b(n$2)):
seq(T(n), n=1..14); # Alois P. Heinz, Jan 21 2022
MATHEMATICA
b[n_, k_] := b[n, k] = Expand[If[n == 0, 1,
x*Sum[b[n - j, j], {j, 1, Min[n, k + 1]}]]];
T[n_] := Rest@CoefficientList[b[n, n], x];
Table[T[n], {n, 1, 14}] // Flatten (* Jean-François Alcover, Apr 14 2022, after Alois P. Heinz *)
CROSSREFS
Cf. A003116 (row sums), A168396.
Sequence in context: A037161 A202175 A202176 * A156041 A306210 A133255
KEYWORD
nonn,tabl
AUTHOR
Vladeta Jovovic, Nov 25 2009
STATUS
approved