Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Apr 14 2022 07:23:10
%S 1,1,1,1,2,1,1,2,3,1,1,3,4,4,1,1,3,6,7,5,1,1,4,7,11,11,6,1,1,4,9,15,
%T 19,16,7,1,1,5,11,19,29,31,22,8,1,1,5,13,25,39,52,48,29,9,1,1,6,15,30,
%U 53,76,88,71,37,10,1,1,6,18,37,67,107,140,142,101,46,11,1,1,7,20,44,84,143,207,245,220,139,56,12,1
%N Triangle, T(n,k) = number of compositions a(1),...,a(k) of n, such that a(i+1) <= a(i) + 1 for 1 <= i < k.
%H Alois P. Heinz, <a href="/A168443/b168443.txt">Rows n = 1..200, flattened</a>
%e Triangle T(n,k) begins:
%e 1;
%e 1, 1;
%e 1, 2, 1;
%e 1, 2, 3, 1;
%e 1, 3, 4, 4, 1;
%e 1, 3, 6, 7, 5, 1;
%e 1, 4, 7, 11, 11, 6, 1;
%e 1, 4, 9, 15, 19, 16, 7, 1;
%e ...
%p b:= proc(n, k) option remember; expand(`if`(n=0, 1,
%p x*add(b(n-j, j), j=1..min(n, k+1))))
%p end:
%p T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(b(n$2)):
%p seq(T(n), n=1..14); # _Alois P. Heinz_, Jan 21 2022
%t b[n_, k_] := b[n, k] = Expand[If[n == 0, 1,
%t x*Sum[b[n - j, j], {j, 1, Min[n, k + 1]}]]];
%t T[n_] := Rest@CoefficientList[b[n, n], x];
%t Table[T[n], {n, 1, 14}] // Flatten (* _Jean-François Alcover_, Apr 14 2022, after _Alois P. Heinz_ *)
%Y Cf. A003116 (row sums), A168396.
%K nonn,tabl
%O 1,5
%A _Vladeta Jovovic_, Nov 25 2009