login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A306210
T(n,k) = binomial(n + k, n) - binomial(n + floor(k/2), n) + 1, square array read by descending antidiagonals (n >= 0, k >= 0).
0
1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 3, 4, 4, 1, 1, 3, 8, 7, 5, 1, 1, 4, 10, 17, 11, 6, 1, 1, 4, 16, 26, 31, 16, 7, 1, 1, 5, 19, 47, 56, 51, 22, 8, 1, 1, 5, 27, 65, 112, 106, 78, 29, 9, 1, 1, 6, 31, 101, 176, 232, 183, 113, 37, 10, 1, 1, 6, 41, 131, 296, 407, 435, 295, 157, 46, 11, 1
OFFSET
0,5
COMMENTS
There are at most T(n,k) possible values for the number of knots in an interpolatory cubature formula of degree k for an integral over an n-dimensional region.
LINKS
Ronald Cools, A Survey of Methods for Constructing Cubature Formulae, In: Espelid T.O., Genz A. (eds), Numerical Integration, NATO ASI Series (Series C: Mathematical and Physical Sciences), Vol. 357, 1991, Springer, Dordrecht, pp. 1-24.
T. N. L. Patterson, On the Construction of a Practical Ermakov-Zolotukhin Multiple Integrator, In: Keast P., Fairweather G. (eds), Numerical Integration, NATO ASI Series (Series C: Mathematical and Physical Sciences), Vol. 203, 1987, Springer, Dordrecht, pp. 269-290.
FORMULA
T(n,k) = A007318(n+k,n) - A046854(n+k,n) + 1.
G.f.: (1 - x - x^2 + x^3 - 2*y + 2*x*y + y^2 - x*y^2 + x^2*y^2)/((1 - x)*(1 - y)*(1 - x - y)*(1 - x^2 - y)).
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 2, 2, 3, 3, 4, 4, 5, 5, ...
1, 3, 4, 8, 10, 16, 19, 27, 31, ...
1, 4, 7, 17, 26, 47, 65, 101, 131, ...
1, 5, 11, 31, 56, 112, 176, 296, 426, ...
1, 6, 16, 51, 106, 232, 407, 737, 1162, ...
1, 7, 22, 78, 183, 435, 841, 1633, 2794, ...
1, 8, 29, 113, 295, 757, 1597, 3313, 6106, ...
1, 9, 37, 157, 451, 1243, 2839, 6271, 12376, ...
...
As triangular array, this begins:
1;
1, 1;
1, 2, 1;
1, 2, 3, 1;
1, 3, 4, 4, 1;
1, 3, 8, 7, 5, 1;
1, 4, 10, 17, 11, 6, 1;
1, 4, 16, 26, 31, 16, 7, 1;
1, 5, 19, 47, 56, 51, 22, 8, 1;
...
MATHEMATICA
T[n_, k_] = Binomial[n + k, n] - Binomial[n + Floor[k/2], n] + 1;
Table[T[k, n - k], {k, 0, n}, {n, 0, 20}] // Flatten
PROG
(Maxima)
T(n, k) := binomial(n + k, n) - binomial(n + floor(k/2), n) + 1$
create_list(T(k, n - k), n, 0, 20, k, 0, n);
CROSSREFS
KEYWORD
nonn,easy,tabl
AUTHOR
STATUS
approved