Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #7 Feb 04 2019 11:22:43
%S 1,1,1,1,2,1,1,2,3,1,1,3,4,4,1,1,3,8,7,5,1,1,4,10,17,11,6,1,1,4,16,26,
%T 31,16,7,1,1,5,19,47,56,51,22,8,1,1,5,27,65,112,106,78,29,9,1,1,6,31,
%U 101,176,232,183,113,37,10,1,1,6,41,131,296,407,435,295,157,46,11,1
%N T(n,k) = binomial(n + k, n) - binomial(n + floor(k/2), n) + 1, square array read by descending antidiagonals (n >= 0, k >= 0).
%C There are at most T(n,k) possible values for the number of knots in an interpolatory cubature formula of degree k for an integral over an n-dimensional region.
%H Ronald Cools, <a href="http://nines.cs.kuleuven.be/ecf/">Encyclopaedia of Cubature Formulas</a>
%H Ronald Cools, <a href="https://doi.org/10.1007/978-94-011-2646-5_1">A Survey of Methods for Constructing Cubature Formulae</a>, In: Espelid T.O., Genz A. (eds), Numerical Integration, NATO ASI Series (Series C: Mathematical and Physical Sciences), Vol. 357, 1991, Springer, Dordrecht, pp. 1-24.
%H T. N. L. Patterson, <a href="https://doi.org/10.1007/978-94-009-3889-2_27">On the Construction of a Practical Ermakov-Zolotukhin Multiple Integrator</a>, In: Keast P., Fairweather G. (eds), Numerical Integration, NATO ASI Series (Series C: Mathematical and Physical Sciences), Vol. 203, 1987, Springer, Dordrecht, pp. 269-290.
%F T(n,k) = A007318(n+k,n) - A046854(n+k,n) + 1.
%F G.f.: (1 - x - x^2 + x^3 - 2*y + 2*x*y + y^2 - x*y^2 + x^2*y^2)/((1 - x)*(1 - y)*(1 - x - y)*(1 - x^2 - y)).
%e Square array begins:
%e 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
%e 1, 2, 2, 3, 3, 4, 4, 5, 5, ...
%e 1, 3, 4, 8, 10, 16, 19, 27, 31, ...
%e 1, 4, 7, 17, 26, 47, 65, 101, 131, ...
%e 1, 5, 11, 31, 56, 112, 176, 296, 426, ...
%e 1, 6, 16, 51, 106, 232, 407, 737, 1162, ...
%e 1, 7, 22, 78, 183, 435, 841, 1633, 2794, ...
%e 1, 8, 29, 113, 295, 757, 1597, 3313, 6106, ...
%e 1, 9, 37, 157, 451, 1243, 2839, 6271, 12376, ...
%e ...
%e As triangular array, this begins:
%e 1;
%e 1, 1;
%e 1, 2, 1;
%e 1, 2, 3, 1;
%e 1, 3, 4, 4, 1;
%e 1, 3, 8, 7, 5, 1;
%e 1, 4, 10, 17, 11, 6, 1;
%e 1, 4, 16, 26, 31, 16, 7, 1;
%e 1, 5, 19, 47, 56, 51, 22, 8, 1;
%e ...
%t T[n_, k_] = Binomial[n + k, n] - Binomial[n + Floor[k/2], n] + 1;
%t Table[T[k, n - k], {k, 0, n}, {n, 0, 20}] // Flatten
%o (Maxima)
%o T(n, k) := binomial(n + k, n) - binomial(n + floor(k/2), n) + 1$
%o create_list(T(k, n - k), n, 0, 20, k, 0, n);
%Y Cf. A007318, A046854, A322596.
%K nonn,easy,tabl
%O 0,5
%A _Franck Maminirina Ramaharo_, Jan 29 2019