login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A306208
Numbers x for which exists a number y such that x = Sum_{j=1..k}{y^(d_j) + (d_j)^y}, where d_j is one of the k digits of x.
1
10, 21, 100, 101, 111, 344, 1000, 1010, 1100, 3674, 10000, 10001, 11101, 100000, 100010, 100011, 100100, 100101, 100110, 101000, 101001, 101010, 101100, 101110, 101111, 110000, 110001, 110010, 110100, 110110, 110111, 111000, 111010, 111011, 111101, 427523, 1000000
OFFSET
1,1
COMMENTS
Lowest values of y for zeroless numbers: e.g., x = 21, 344, 3674 -> y = 3, x = 427523 -> y = 6, x = 75818252 -> y = 8.
EXAMPLE
x = 10 -> y = 8 because 8^1 + 8^0 + 1^8 + 0^8 = 10.
x = 21 -> y = 3 because 3^2 + 3^1 + 2^3 + 1^3 = 21.
x = 100 -> y = 97 because 97^1 + 97^0 + 97^0 + 1^97 + 0^97 + 0^97 = 100.
MAPLE
P:=proc(q) local a, b, j, k, n; for n from 1 to q do
a:=convert(n, base, 10); for k from 1 to q do
b:=add(j^k+k^j, j=a); if b>n then break; else
if n=b then print(n); fi; fi; od; od; end: P(10^9);
CROSSREFS
Cf. A258484.
Sequence in context: A215574 A146083 A321722 * A001739 A072805 A119033
KEYWORD
nonn,base,easy
AUTHOR
Paolo P. Lava, Jan 29 2019
STATUS
approved