login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A215574
Minimal sum s of n distinct squares such that s is divisible by n.
1
1, 10, 21, 84, 55, 156, 140, 240, 342, 470, 506, 864, 819, 1176, 1395, 1616, 1785, 2214, 2470, 3260, 3570, 4092, 4324, 5184, 5525, 6578, 7101, 8456, 8555, 9750, 10416, 11712, 13134, 14314, 14910, 16776, 17575, 19570, 21099, 22760, 23821, 26166, 27434, 30096
OFFSET
1,2
COMMENTS
At n = 6k +/- 1, there is a simple formula a(n) = n*(n+1)*(2n+1)/6 and set of squares is the first n squares {1..n}^2.
Companion sequence of minimal integral averages of n distinct squares is a(n)/n: 1, 5, 7, 21, 11, 26, 20, 30, 38, 47, 46, 72, 63, 84, 93, 101, 105, 123, 130, 163, 170, 186, 188, 216, 221, ... .
EXAMPLE
a(1) = 1 = 1^2 = 1*1.
a(2) = 10 = 1^2 + 3^2 = 2*5.
a(3) = 21 = 1^2 + 2^2 + 4^2 = 3*7.
a(4) = 84 = 1^2 + 3^2 + 5^2 + 7^2 = 4*21.
a(5) = 55 = 1^2 + 2^2 + 3^2 + 4^2 + 5^2 = 5*11.
MAPLE
b:= proc(n, i, t) option remember; local h; h:= t*(t+1)*(2*t+1)/6;
i>=t and n>=h and (n=h or t>0 and
(b(n, i-1, t) or i<=n and b(n-i^2, i-1, t-1)))
end:
a:= proc(n) local s;
for s from n*ceil((n+1)*(2*n+1)/6) by n
while not b(s, iroot(s, 2)+1, n)
do od; s
end:
seq(a(n), n=1..50); # Alois P. Heinz, Aug 16 2012
MATHEMATICA
$RecursionLimit = 2000;
b[n_, i_, t_] := b[n, i, t] = Module[{h = t(t+1)(2t+1)/6}, i >= t && n >= h && (n==h || t>0 && (b[n, i-1, t] || i <= n && b[n-i^2, i-1, t-1]))];
a[n_] := Module[{s}, For[s = n Ceiling[(n+1)(2n+1)/6], !b[s, Floor @ Sqrt[s] + 1, n], s += n]; s];
Array[a, 50] (* Jean-François Alcover, Nov 22 2020, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A096564 A041196 A082669 * A146083 A321722 A306208
KEYWORD
nonn
AUTHOR
Zak Seidov, Aug 16 2012
EXTENSIONS
More terms from Alois P. Heinz, Aug 16 2012
STATUS
approved