

A215572


a(n) = 3*a(n1) + 46*a(n2) + a(n3) with a(0)=2, a(1)=5, a(2)=106.


7



2, 5, 106, 550, 6531, 44999, 435973, 3384404, 30252969, 246877464, 2135653370, 17793576423, 151867661753, 1276243154087, 10832435479322, 91356359187721, 773637352766062, 6534137016412674, 55281085635664595, 467187197014742851, 3951025667301212597, 33398969150217473532
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

The Ramanujantype sequence number 8 for the argument 2Pi/7 (see also A214683, A215112, A006053, A006054, A215076, A215100, A120757, A215560, A215569 for the numbers: 1, 1a, 2, 2a, 37 respectively). The sequence a(n) is one of the three special sequences (the remaining two are A215560 and A215569) connected with the following recurrence relation:
(c(1)^4/c(2))^(n/3) + (c(2)^4/c(4))^(n/3) + (c(4)^4/c(1))^(n/3) = at(n) + bt(n)*7^(1/3) + ct(n)*49^(1/3), where c(j):=2*cos(2*Pi*j/7), and the sequences at(n), bt(n), and ct(n) are defined in comments to A215560 (see also A215569). It follows that a(n)=ct(3*n+2), at(3*n+2)=bt(3*n+2)=0, which implies the first formula below.
We note that if a(n), a(n+1) and a(n+2) are all odd for some n in N then a(n+3) is even, a(n+4) is odd, a(n+5) and a(n+6) are both even, and the numbers a(n+7), a(n+8), a(n+9) are all odd again. In consequence, this situation hold for every n of the form 7*k+4, k=0,1,..., in the other words cyclical through all sequence a(n), n=4,5,... (from n=1 whenever we start from oddeveneven sequence).


REFERENCES

R. Witula, E. Hetmaniok, D. Slota, Sums of the powers of any order roots taken from the roots of a given polynomial, Proceedings of the Fifteenth International Conference on Fibonacci Numbers and Their Applications, Eger, Hungary, 2012.


LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000
Roman Witula, Ramanujan Type Trigonometric Formulas: The General Form for the Argument 2*Pi/7, Journal of Integer Sequences, Vol. 12 (2009), Article 09.8.5.
Roman Witula, Full Description of Ramanujan Cubic Polynomials, Journal of Integer Sequences, Vol. 13 (2010), Article 10.5.7.
Roman Witula, Ramanujan Cubic Polynomials of the Second Kind, Journal of Integer Sequences, Vol. 13 (2010), Article 10.7.5.
Roman Witula, Ramanujan Type Trigonometric Formulae, Demonstratio Math. 45 (2012) 779796.
Index entries for linear recurrences with constant coefficients, signature (3,46,1).


FORMULA

49^(1/3)*a(n) = (c(1)^4/c(2))^(n+2/3) + (c(2)^4/c(4))^(n+2/3) + (c(4)^4/c(1))^(n+2/3) = (c(1)*(c(1)/c(2))^(1/3))^(3*n+2) + (c(2)*(c(2)/c(4))^(1/3))^(3*n+2) + (c(4)*(c(4)/c(1))^(1/3))^(3*n+2).
G.f.: (2xx^2)/(13*x46*x^2x^3).


EXAMPLE

From 4*a(1)+5*a(2)=a(3) we obtain 4*((c(1)^4/c(2))^(5/3) + (c(2)^4/c(4))^(5/3) + (c(4)^4/c(1))^(5/3)) + 5*((c(1)^4/c(2))^(8/3) + (c(2)^4/c(4))^(8/3) + (c(4)^4/c(1))^(8/3)) = (4 + 5*c(1)^4/c(2))*((c(1)^4/c(2))^(5/3) + (4 + 5*c(2)^4/c(4))*((c(2)^4/c(4))^(5/3) + (4 + 5*c(4)^4/c(1))*((c(4)^4/c(1))^(5/3) = (c(1)^4/c(2))^(11/3) + (c(2)^4/c(4))^(11/3) + (c(4)^4/c(1))^(11/3) = 550*49^(1/3).


MATHEMATICA

LinearRecurrence[{3, 46, 1}, {2, 5, 106}, 50]
CoefficientList[Series[(2  x  x^2)/(1  3*x  46*x^2  x^3), {x, 0, 50}], x] (* G. C. Greubel, Apr 16 2017 *)


PROG

(PARI) Vec((2xx^2)/(13*x46*x^2x^3) + O(x^40)) \\ Michel Marcus, Apr 20 2016


CROSSREFS

Cf. A214683, A215112, A006053, A006054, A215076, A215100, A120757, A215560, A215569.
Sequence in context: A122696 A237267 A266284 * A023263 A070855 A228850
Adjacent sequences: A215569 A215570 A215571 * A215573 A215574 A215575


KEYWORD

nonn,easy


AUTHOR

Roman Witula, Aug 16 2012


EXTENSIONS

More terms from Michel Marcus, Apr 20 2016


STATUS

approved



