login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A168479
G.f. satisfies: A(x/A(x)) = G(x)^3 where G(x) = 1 + x*G(x)^3 is the g.f. of A001764.
3
1, 3, 21, 217, 2895, 46479, 857670, 17619348, 394066449, 9445681950, 239946999264, 6407385578778, 178774882463450, 5188026867995184, 156036783823130184, 4850255971984578744, 155467140310522090338
OFFSET
0,2
FORMULA
G.f. satisfies: A(x) = [1 + A(x)*Series_Reversion(x/A(x))]^3.
G.f. satisfies: A( (x*(1-x)^2)/A(x*(1-x)^2) ) = 1/(1-x)^3.
G.f. satisfies: A( (x/(1+x)^3)/A(x/(1+x)^3) ) = (1 + x)^3.
Self-convolution cube of A168478.
EXAMPLE
G.f.: A(x) = 1 + 3*x + 21*x^2 + 217*x^3 + 2895*x^4 + 46479*x^5 +...
A(x/A(x)) = 1 + 3*x + 12*x^2 + 55*x^3 + 273*x^4 + 1428*x^5 +...+ A001764(n+1)*x^n +...
PROG
(PARI) {a(n)=local(A=1+x, F=sum(k=0, n, binomial(3*k+1, k)/(3*k+1)*x^k)+x*O(x^n)); for(i=0, n, A=subst(F^3, x, serreverse(x/(A+x*O(x^n))))); polcoeff(A, n)}
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=(1+A*serreverse(x/(A+x*O(x^n))))^3); polcoeff(A, n)}
CROSSREFS
Cf. A168478, A168449 (variant), A001764.
Sequence in context: A339644 A372159 A120972 * A158838 A236963 A107716
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 06 2009
STATUS
approved