The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A168481 G.f.: Sum_{n>=0} (n+1)*2^(n^2)*(1 + 2^n*x)^n*x^n. 2
 1, 4, 56, 2432, 377600, 222691328, 513752956928, 4690384533848064, 170085542794237050880, 24520078828632712041988096, 14055876186039467842015007342592 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS This sequence illustrates the identity: Sum_{n>=0} (n+1)*q^(n^2)*G(q^n*x)^n*x^n = Sum_{n>=0} c(n)*x^n where c(n) = [x^n] 1/(1 - q^n*x*G(x))^2. LINKS FORMULA a(n) = [x^n] 1/(1 - 2^n*x*(1+x))^2. a(n) = Sum_{k=0..[n/2]} (n-k+1)*C(n-k,k)*2^(n(n-k)). a(n) ~ n * 2^(n^2). - Vaclav Kotesovec, Nov 05 2014 EXAMPLE G.f.: A(x) = 1 + 4*x + 56*x^2 + 2432*x^3 + 377600*x^4 +... MATHEMATICA Table[Sum[(n-k+1)*Binomial[n-k, k]*2^(n*(n-k)), {k, 0, Floor[n/2]}], {n, 0, 15}] (* Vaclav Kotesovec, Nov 05 2014 *) PROG (PARI) {a(n)=polcoeff(sum(m=0, n, (m+1)*(1+2^m*x)^m*2^(m^2)*x^m)+x*O(x^n), n)} (PARI) {a(n)=polcoeff(1/(1-2^n*x*(1+x)+x*O(x^n))^2, n)} (PARI) {a(n)=sum(k=0, n\2, (n-k+1)*binomial(n-k, k)*2^(n*(n-k)))} CROSSREFS Cf. A168480, A168482. Sequence in context: A012959 A013113 A009105 * A171801 A091797 A265230 Adjacent sequences: A168478 A168479 A168480 * A168482 A168483 A168484 KEYWORD nonn AUTHOR Paul D. Hanna, Nov 26 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 7 22:10 EST 2023. Contains 360132 sequences. (Running on oeis4.)