login
A168480
G.f.: Sum_{n>=0} 2^(n^2)*(1 + 2^n*x)^n*x^n.
2
1, 2, 20, 640, 78080, 37847040, 74189111296, 589682903613440, 18955380356036952064, 2455824622368881511497728, 1278825951842748707166092263424, 2671459568763422966186162922297753600
OFFSET
0,2
COMMENTS
This sequence illustrates the identity:
Sum_{n>=0} q^(n^2)*G(q^n*x)^n*x^n = Sum_{n>=0} c(n)*x^n
where c(n) = [x^n] 1/(1 - q^n*x*G(x)).
FORMULA
a(n) = [x^n] 1/(1 - 2^n*x*(1+x)).
a(n) = Sum_{k=0..[n/2]} C(n-k,k)*2^(n(n-k)).
a(n) ~ 2^(n^2). - Vaclav Kotesovec, Nov 05 2014
EXAMPLE
G.f.: A(x) = 1 + 2*x + 20*x^2 + 640*x^3 + 78080*x^4 +...
MATHEMATICA
Table[Sum[Binomial[n-k, k]*2^(n*(n-k)), {k, 0, Floor[n/2]}], {n, 0, 15}] (* Vaclav Kotesovec, Nov 05 2014 *)
PROG
(PARI) {a(n)=polcoeff(sum(m=0, n, (1+2^m*x)^m*2^(m^2)*x^m)+x*O(x^n), n)}
(PARI) {a(n)=polcoeff(1/(1-2^n*x*(1+x)+x*O(x^n)), n)}
(PARI) {a(n)=sum(k=0, n\2, binomial(n-k, k)*2^(n*(n-k)))}
CROSSREFS
Sequence in context: A015207 A054941 A012495 * A364886 A198761 A171799
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 26 2009
STATUS
approved