login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A168480
G.f.: Sum_{n>=0} 2^(n^2)*(1 + 2^n*x)^n*x^n.
2
1, 2, 20, 640, 78080, 37847040, 74189111296, 589682903613440, 18955380356036952064, 2455824622368881511497728, 1278825951842748707166092263424, 2671459568763422966186162922297753600
OFFSET
0,2
COMMENTS
This sequence illustrates the identity:
Sum_{n>=0} q^(n^2)*G(q^n*x)^n*x^n = Sum_{n>=0} c(n)*x^n
where c(n) = [x^n] 1/(1 - q^n*x*G(x)).
FORMULA
a(n) = [x^n] 1/(1 - 2^n*x*(1+x)).
a(n) = Sum_{k=0..[n/2]} C(n-k,k)*2^(n(n-k)).
a(n) ~ 2^(n^2). - Vaclav Kotesovec, Nov 05 2014
EXAMPLE
G.f.: A(x) = 1 + 2*x + 20*x^2 + 640*x^3 + 78080*x^4 +...
MATHEMATICA
Table[Sum[Binomial[n-k, k]*2^(n*(n-k)), {k, 0, Floor[n/2]}], {n, 0, 15}] (* Vaclav Kotesovec, Nov 05 2014 *)
PROG
(PARI) {a(n)=polcoeff(sum(m=0, n, (1+2^m*x)^m*2^(m^2)*x^m)+x*O(x^n), n)}
(PARI) {a(n)=polcoeff(1/(1-2^n*x*(1+x)+x*O(x^n)), n)}
(PARI) {a(n)=sum(k=0, n\2, binomial(n-k, k)*2^(n*(n-k)))}
CROSSREFS
Sequence in context: A015207 A054941 A012495 * A364886 A198761 A171799
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 26 2009
STATUS
approved