OFFSET
1,2
COMMENTS
The triangle of oriented labeled graphs on n>=1 nodes with 1<=k<=n components and row sums A047656 starts:
1;
2, 1;
20, 6, 1;
624, 92, 12, 1;
55248, 3520, 260, 20, 1;
13982208, 354208, 11880, 580, 30, 1; - R. J. Mathar, Apr 29 2019
LINKS
Seiichi Manyama, Table of n, a(n) for n = 1..65
V. A. Liskovets, Some easily derivable sequences, J. Integer Sequences, 3 (2000), #00.2.2.
FORMULA
E.g.f.: log( Sum_{n >= 0} 3^binomial(n, 2)*x^n/n! ). - Vladeta Jovovic, Feb 14 2003
MATHEMATICA
nn=20; s=Sum[3^Binomial[n, 2]x^n/n!, {n, 0, nn}];
Drop[Range[0, nn]! CoefficientList[Series[Log[s]+1, {x, 0, nn}], x], 1] (* Geoffrey Critzer, Oct 22 2012 *)
PROG
(PARI) N=20; x='x+O('x^N); Vec(serlaplace(log(sum(k=0, N, 3^binomial(k, 2)*x^k/k!)))) \\ Seiichi Manyama, May 18 2019
(Magma)
m:=30;
f:= func< x | (&+[3^Binomial(n, 2)*x^n/Factorial(n) : n in [0..m+3]]) >;
R<x>:=PowerSeriesRing(Rationals(), m);
Coefficients(R!(Laplace( Log(f(x)) ))); // G. C. Greubel, Apr 28 2023
(SageMath)
m=30
def f(x): return sum(3^binomial(n, 2)*x^n/factorial(n) for n in range(m+4))
def A054941_list(prec):
P.<x> = PowerSeriesRing(QQ, prec)
return P( log(f(x)) ).egf_to_ogf().list()
a=A054941_list(40); a[1:] # G. C. Greubel, Apr 28 2023
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, May 24 2000
EXTENSIONS
More terms from Vladeta Jovovic, Feb 14 2003
STATUS
approved