login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of weakly connected oriented graphs on n labeled nodes.
10

%I #31 Apr 29 2023 08:10:29

%S 1,2,20,624,55248,13982208,10358360640,22792648882176,

%T 149888345786341632,2952810709943411146752,

%U 174416705255313941476193280,30901060796613886817249881227264,16422801513633911416125344647746244608,26183660776604240464418800095675915958222848

%N Number of weakly connected oriented graphs on n labeled nodes.

%C The triangle of oriented labeled graphs on n>=1 nodes with 1<=k<=n components and row sums A047656 starts:

%C 1;

%C 2, 1;

%C 20, 6, 1;

%C 624, 92, 12, 1;

%C 55248, 3520, 260, 20, 1;

%C 13982208, 354208, 11880, 580, 30, 1; - _R. J. Mathar_, Apr 29 2019

%H Seiichi Manyama, <a href="/A054941/b054941.txt">Table of n, a(n) for n = 1..65</a>

%H V. A. Liskovets, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL3/LISK/Derseq.html">Some easily derivable sequences</a>, J. Integer Sequences, 3 (2000), #00.2.2.

%F E.g.f.: log( Sum_{n >= 0} 3^binomial(n, 2)*x^n/n! ). - _Vladeta Jovovic_, Feb 14 2003

%t nn=20; s=Sum[3^Binomial[n,2]x^n/n!,{n,0,nn}];

%t Drop[Range[0,nn]! CoefficientList[Series[Log[s]+1,{x,0,nn}],x],1] (* _Geoffrey Critzer_, Oct 22 2012 *)

%o (PARI) N=20; x='x+O('x^N); Vec(serlaplace(log(sum(k=0, N, 3^binomial(k, 2)*x^k/k!)))) \\ _Seiichi Manyama_, May 18 2019

%o (Magma)

%o m:=30;

%o f:= func< x | (&+[3^Binomial(n,2)*x^n/Factorial(n) : n in [0..m+3]]) >;

%o R<x>:=PowerSeriesRing(Rationals(), m);

%o Coefficients(R!(Laplace( Log(f(x)) ))); // _G. C. Greubel_, Apr 28 2023

%o (SageMath)

%o m=30

%o def f(x): return sum(3^binomial(n,2)*x^n/factorial(n) for n in range(m+4))

%o def A054941_list(prec):

%o P.<x> = PowerSeriesRing(QQ, prec)

%o return P( log(f(x)) ).egf_to_ogf().list()

%o a=A054941_list(40); a[1:] # _G. C. Greubel_, Apr 28 2023

%Y Row sums of A350732.

%Y The unlabeled version is A086345.

%Y Cf. A001187 (graphs), A003027 (digraphs), A350730 (strongly connected).

%K nonn,easy

%O 1,2

%A _N. J. A. Sloane_, May 24 2000

%E More terms from _Vladeta Jovovic_, Feb 14 2003