login
A120973
G.f. satisfies: A(x) = 1 + x*A(x)^3*[A(x*A(x)^3)]^3.
4
1, 1, 6, 60, 776, 11802, 201465, 3759100, 75404151, 1608036861, 36172106112, 853346084343, 21021015647574, 538868533164995, 14336235065928966, 394957784033440194, 11246848201518516044, 330520280036501809758
OFFSET
0,3
FORMULA
G.f. A(x) satisfies: A(x) = G(G(x)-1), A(G(x)-1) = G(A(x)-1), A(x) = G(x*A(x)^3) and A(x/G(x)^3) = G(x), where G(x) is the g.f. of A120972 and satisfies G(x/G(x)^3) = 1 + x.
PROG
(PARI) {a(n)=local(A, G=[1, 1]); for(i=1, n, G=concat(G, 0); G[ #G]=-Vec(subst(Ser(G), x, x/Ser(G)^3))[ #G]); A=Vec(((Ser(G)-1)/x)^(1/3)); A[n+1]}
CROSSREFS
Cf. A120972; variants: A120971, A120975, A120977.
Sequence in context: A357771 A126779 A218441 * A259606 A302102 A168478
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 20 2006
STATUS
approved