OFFSET
0,3
COMMENTS
FORMULA
Using the Stirling approximation for n! we get the asymptotic expansion a(n) ~ 3^(3*n+1/2)/(2*Pi*n*(n+1)*(2*n+1) = A086201*3^(3*n+1/2)/(n*(n+1)*(2*n+1)). - A.H.M. Smeets, Dec 31 2022
EXAMPLE
G.f.: A(x) = 1 + x + 6*x^2 + 60*x^3 + 770*x^4 + 11466*x^5 + 188496*x^6 +...
PROG
(PARI) {a(n)=binomial(2*n, n)/(n+1)*binomial(3*n, n)/(2*n+1)}
for(n=0, 25, print1(a(n), ", "))
(Maxima) A218441[n]:=binomial(2*n, n)/(n+1)*binomial(3*n, n)/(2*n+1)$
makelist(A218441[n], n, 0, 30); /* Martin Ettl, Oct 29 2012 */
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 28 2012
STATUS
approved