login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A218441
a(n) = A000108(n)*A001764(n).
1
1, 1, 6, 60, 770, 11466, 188496, 3325608, 61866090, 1199333850, 24030289140, 494663027040, 10414559269296, 223487031938800, 4874879691748800, 107852781825352080, 2415945569351185530, 54714061423541554650, 1251237165698155135500, 28864572348777684057000
OFFSET
0,3
COMMENTS
G.f. of A000108, C(x), satisfies: C(x) = 1 + x*C(x)^2;
G.f. of A001764, F(x), satisfies: F(x) = 1 + x*F(x)^3.
FORMULA
Using the Stirling approximation for n! we get the asymptotic expansion a(n) ~ 3^(3*n+1/2)/(2*Pi*n*(n+1)*(2*n+1) = A086201*3^(3*n+1/2)/(n*(n+1)*(2*n+1)). - A.H.M. Smeets, Dec 31 2022
EXAMPLE
G.f.: A(x) = 1 + x + 6*x^2 + 60*x^3 + 770*x^4 + 11466*x^5 + 188496*x^6 +...
PROG
(PARI) {a(n)=binomial(2*n, n)/(n+1)*binomial(3*n, n)/(2*n+1)}
for(n=0, 25, print1(a(n), ", "))
(Maxima) A218441[n]:=binomial(2*n, n)/(n+1)*binomial(3*n, n)/(2*n+1)$
makelist(A218441[n], n, 0, 30); /* Martin Ettl, Oct 29 2012 */
CROSSREFS
Sequence in context: A065944 A357771 A126779 * A120973 A259606 A302102
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 28 2012
STATUS
approved