login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A065944
Bessel polynomial {y_n}''(-1).
2
0, 0, 6, -60, 720, -9870, 153510, -2679264, 51934680, -1107917910, 25807660560, -651977992380, 17758547202396, -518856566089680, 16188283372489410, -537210169663283760, 18894951642157260480, -702160022681408982114
OFFSET
0,3
REFERENCES
J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.
FORMULA
Recurrence: (n-2)*(n-1)*a(n) = -(n-2)*(n+1)*(2*n-1)*a(n-1) + n*(n+1)*a(n-2). - Vaclav Kotesovec, Jul 22 2015
a(n) ~ (-1)^n * 2^(n+1/2) * n^(n+2) / exp(n+1). - Vaclav Kotesovec, Jul 22 2015
From G. C. Greubel, Aug 14 2017: (Start)
a(n) = 2*n*(n-1)*(1/2)_{n}*(-2)^(n - 1)* hypergeometric1f1(2 - n, -2*n, -2), where (a)_{n} is the Pochhammer symbol.
E.g.f.: (1 + 2*x)^(-5/2)*(x*(x + 2)*sqrt(1 + 2*x) + (2*x^3 - 2*x)) * exp(-1 + sqrt(1 + 2*x)). (End)
G.f.: (6*x^2/(1-x)^5)*hypergeometric2f0(3,5/2; - ; -2*x/(1-x)^2). - G. C. Greubel, Aug 16 2017
MATHEMATICA
Table[Sum[(n+k+2)!*(-1)^k/(2^(k+2)*(n-k-2)!*k!), {k, 0, n-2}], {n, 0, 20}] (* Vaclav Kotesovec, Jul 22 2015 *)
Join[{0, 0}, Table[4*n*(n-1)*Pochhammer[1/2, n]*(-2)^(n-2)* Hypergeometric1F1[2-n, -2*n, -2], {n, 2, 20}]] (* G. C. Greubel, Aug 14 2017 *)
PROG
(PARI) for(n=0, 20, print1(sum(k=0, n-2, (n+k+2)!*(-1)^k/(2^(k+2)*(n-k-2)!*k!)), ", ")) \\ G. C. Greubel, Aug 14 2017
(Magma) f:=Factorial; [0, 0] cat [(&+[((-1)^k*f(n+k+2)/(2^(k+2)*f(n-k-2) *f(k))): k in [0..n-2]]): n in [2..20]]; // G. C. Greubel, Jul 10 2019
(Sage) f=factorial; [0, 0]+[sum((-1)^k*f(n+k+2)/(2^(k+2)*f(n-k-2)*f(k)) for k in (0..n-2)) for n in (2..20)] # G. C. Greubel, Jul 10 2019
(GAP) f:=Factorial;; Concatenation([0, 0], List([2..20], n-> Sum([0..n-2], k-> (-1)^k*f(n+k+2)/(2^(k+2)*f(n-k-2)*f(k)) ))); # G. C. Greubel, Jul 10 2019
CROSSREFS
Sequence in context: A086984 A000894 A112117 * A357771 A126779 A218441
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Dec 08 2001
STATUS
approved