The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A065947 Bessel polynomial {y_n}''(3). 1
 0, 0, 6, 300, 13320, 620130, 31406550, 1743174216, 105889417200, 7010411889690, 503353562247360, 39003404559533700, 3246506259033473436, 289042023964190515200, 27418894569798460848210, 2761554229456140638184840, 294364593823858690215256200 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 REFERENCES J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77. LINKS G. C. Greubel, Table of n, a(n) for n = 0..340 Index entries for sequences related to Bessel functions or polynomials FORMULA From G. C. Greubel, Aug 14 2017: (Start) a(n) = 4*n*(n - 1)*(1/2)_{n}*6^(n - 2)*hypergeometric1F1[(2-n, -2*n, 2/3), where (a)_{n} is the Pochhammer symbol. E.g.f.: (-1/81)*(1 - 6*x)^(-5/2)*((171*x^2 - 90*x + 8)*sqrt(1 - 6*x) + (54*x^3 - 648*x^2 + 114*x - 8))*exp((1 - sqrt(1 - 6*x))/3). (End) G.f.: (6*x^2/(1-x)^5)*hypergeometric2F0(3,5/2; - ; 6*x/(1-x)^2). - G. C. Greubel, Aug 16 2017 MATHEMATICA Join[{0, 0}, Table[4*n*(n - 1)*Pochhammer[1/2, n]*6^(n - 2)* Hypergeometric1F1[2 - n, -2*n, 2/3], {n, 2, 50}]] (* G. C. Greubel, Aug 14 2017 *) PROG (PARI) for(n=0, 50, print1(sum(k=0, n-2, ((n+k+2)!/(4*k!*(n-k-2)!))*(3/2)^k), ", ")) \\ G. C. Greubel, Aug 14 2017 CROSSREFS Cf. A001516, A001518. Sequence in context: A197165 A264706 A066718 * A277168 A081321 A159494 Adjacent sequences: A065944 A065945 A065946 * A065948 A065949 A065950 KEYWORD nonn AUTHOR N. J. A. Sloane, Dec 08 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 10 09:31 EST 2023. Contains 367710 sequences. (Running on oeis4.)