login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A081321
a(n) = (2/3)*(2*n+1)*(2*n-1)!*binomial(3*n,2*n).
1
6, 300, 47040, 14968800, 7991343360, 6422134118400, 7240779786240000, 10899907851216384000, 21115899915689779200000, 51167604130438090014720000, 151615591667542267763097600000, 539306547534817468755148800000000, 2267795648217238975260881584128000000
OFFSET
1,1
LINKS
M. Bousquet and C. Lamathe, Enumeration of solid trees according to edge number and edge degree distribution, Discr. Math., 298 (2005), 115-141.
FORMULA
(27*n^4+27*n^3+6*n^2)*a(n)+(108*n^4+648*n^3+1373*n^2+1233*n+400)*a(n+1)+(-4*n^2-12*n-8)*a(n+2) = 0. - Robert Israel, Mar 29 2017
a(n) = (2n+1)(3n-1)!/n!. - Jean-François Alcover, Sep 22 2019
MAPLE
seq(2/3*(2*n+1)*(2*n-1)!*binomial(3*n, 2*n), n=1..30); # Robert Israel, Mar 29 2017
MATHEMATICA
a[n_] := (2n+1)(3n-1)!/n!;
Array[a, 30] (* Jean-François Alcover, Sep 22 2019 *)
CROSSREFS
Sequence in context: A066718 A065947 A277168 * A159494 A221850 A229148
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, May 22 2003
STATUS
approved