login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A065949
Bessel polynomial {y_n}'''(0).
1
0, 0, 0, 90, 630, 2520, 7560, 18900, 41580, 83160, 154440, 270270, 450450, 720720, 1113840, 1670760, 2441880, 3488400, 4883760, 6715170, 9085230, 12113640, 15939000, 20720700, 26640900, 33906600, 42751800, 53439750, 66265290, 81557280, 99681120, 121041360, 146084400
OFFSET
0,4
REFERENCES
J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.
FORMULA
a(n) = 90 * C(n-3, 6) = 90 * A000579(n-3). - Ralf Stephan, Sep 03 2003
From Colin Barker, Aug 01 2013: (Start)
a(n) = ((-2+n)*(-1+n)*n*(1+n)*(2+n)*(3+n))/8.
G.f.: -90*x^3 / (x-1)^7. (End)
E.g.f.: (1/8)*x^3*(120 + 90*x + 18*x^2 + x^3)*exp(x). - G. C. Greubel, Aug 15 2017
MATHEMATICA
Drop[90*Binomial[Range[40]-3, 6], 5] (* Harvey P. Dale, Sep 20 2013 *)
PROG
(PARI) for(n=0, 50, print1(90*binomial(n+3, 6), ", ")) \\ G. C. Greubel, Aug 15 2017
CROSSREFS
Sequence in context: A203780 A295982 A367093 * A224541 A051695 A304165
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Dec 08 2001
EXTENSIONS
More terms from Colin Barker, Aug 01 2013
STATUS
approved