|
|
A051695
|
|
Number of degree-n even permutations of order exactly 4.
|
|
17
|
|
|
0, 0, 0, 0, 0, 90, 630, 3780, 18900, 94500, 457380, 3825360, 31505760, 312432120, 2704501800, 22984481520, 179863997040, 1531709328240, 13078616488560, 147223414987200, 1657733805020160, 20131890668255520, 226464779237447520, 2542924546378413120, 27053572399079688000
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,6
|
|
LINKS
|
Andrew Howroyd, Table of n, a(n) for n = 1..200
|
|
FORMULA
|
a(n) = (A001473(n) + A051685(n))/2.
E.g.f.: (exp(x + x^2/2 + x^4/4) + exp(x - x^2/2 - x^4/4) - exp(x + x^2/2) - exp(x - x^2/2))/2. - Andrew Howroyd, Feb 01 2020
|
|
MATHEMATICA
|
m = 26; ((Exp[x + x^2/2 + x^4/4] + Exp[x - x^2/2 - x^4/4] - Exp[x + x^2/2] - Exp[x - x^2/2])/2 + O[x]^m // CoefficientList[#, x]& // Rest) * Range[m - 1]! (* Jean-François Alcover, Feb 09 2020, after Andrew Howroyd *)
|
|
PROG
|
(PARI) seq(n)={my(A=O(x*x^n)); Vec(serlaplace(exp(x + x^2/2 + x^4/4 + A) + exp(x - x^2/2 - x^4/4 + A) - exp(x + x^2/2 + A) - exp(x - x^2/2 + A))/2, -n)} \\ Andrew Howroyd, Feb 01 2020
|
|
CROSSREFS
|
Cf. A001473, A048099, A051685.
Sequence in context: A295982 A065949 A224541 * A304165 A232588 A097372
Adjacent sequences: A051692 A051693 A051694 * A051696 A051697 A051698
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
Vladeta Jovovic
|
|
EXTENSIONS
|
Terms a(19) and beyond from Andrew Howroyd, Feb 01 2020
|
|
STATUS
|
approved
|
|
|
|