OFFSET
1,4
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..200
Koda, Tatsuhiko; Sato, Masaki; Takegahara, Yugen; 2-adic properties for the numbers of involutions in the alternating groups, J. Algebra Appl. 14 (2015), no. 4, 1550052 (21 pages).
FORMULA
a(n) = Sum_{i=1..floor(n/4)} binomial(n,4i)(4i)!/(2^(2i)(2i)!). - Luis Manuel Rivera Martínez, May 16 2018
E.g.f.: (exp(x + x^2/2) + exp(x - x^2/2))/2 - exp(x). - Andrew Howroyd, Feb 01 2020
MATHEMATICA
Table[Sum[Binomial[n , 4 i] (4 i)!/(2^(2 i) (2 i)!), {i, 1, Floor[n/4]}], {n, 1, 22}] (* Luis Manuel Rivera Martínez, May 16 2018 *)
PROG
(PARI) a(n) = sum(i=1, n\4, binomial(n, 4*i)*(4*i)!/(2^(2*i)*(2*i)!)); \\ Michel Marcus, May 17 2018
(PARI) seq(n)={my(A=O(x*x^n)); Vec(serlaplace(exp(x + x^2/2 + A) + exp(x - x^2/2 + A) - 2*exp(x + A))/2, -n)} \\ Andrew Howroyd, Feb 01 2020
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
STATUS
approved