login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A048099
Number of degree-n even permutations of order exactly 2.
18
0, 0, 0, 3, 15, 45, 105, 315, 1323, 5355, 18315, 63855, 272415, 1264263, 5409495, 22302735, 101343375, 507711375, 2495918223, 11798364735, 58074029055, 309240315615, 1670570920095, 8792390355903, 46886941456575, 264381946998975, 1533013006902975, 8785301059346175, 50439885753378303
OFFSET
1,4
LINKS
Koda, Tatsuhiko; Sato, Masaki; Takegahara, Yugen; 2-adic properties for the numbers of involutions in the alternating groups, J. Algebra Appl. 14 (2015), no. 4, 1550052 (21 pages).
FORMULA
a(n) = (A001189(n) + A051684(n))/2.
a(n) = Sum_{i=1..floor(n/4)} binomial(n,4i)(4i)!/(2^(2i)(2i)!). - Luis Manuel Rivera Martínez, May 16 2018
E.g.f.: (exp(x + x^2/2) + exp(x - x^2/2))/2 - exp(x). - Andrew Howroyd, Feb 01 2020
MATHEMATICA
Table[Sum[Binomial[n , 4 i] (4 i)!/(2^(2 i) (2 i)!), {i, 1, Floor[n/4]}], {n, 1, 22}] (* Luis Manuel Rivera Martínez, May 16 2018 *)
PROG
(PARI) a(n) = sum(i=1, n\4, binomial(n, 4*i)*(4*i)!/(2^(2*i)*(2*i)!)); \\ Michel Marcus, May 17 2018
(PARI) seq(n)={my(A=O(x*x^n)); Vec(serlaplace(exp(x + x^2/2 + A) + exp(x - x^2/2 + A) - 2*exp(x + A))/2, -n)} \\ Andrew Howroyd, Feb 01 2020
CROSSREFS
Cf. A001189, A051695. A column of A057740.
Sequence in context: A334078 A094191 A050534 * A030505 A301632 A074355
KEYWORD
easy,nonn
STATUS
approved