login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A048098 Numbers n that are sqrt(n)-smooth: if p | n then p^2 <= n when p is prime. 14
1, 4, 8, 9, 12, 16, 18, 24, 25, 27, 30, 32, 36, 40, 45, 48, 49, 50, 54, 56, 60, 63, 64, 70, 72, 75, 80, 81, 84, 90, 96, 98, 100, 105, 108, 112, 120, 121, 125, 126, 128, 132, 135, 140, 144, 147, 150, 154, 160, 162, 165, 168, 169, 175, 176, 180, 182, 189, 192, 195 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

A006530(a(n))^2 <= a(n). - Reinhard Zumkeller, Oct 12 2011

This set (say S) has density d(S) = 1-Log(2) and multiplicative density m(S) = 1-exp(-Gamma). Multiplicative density : let A be a set of numbers, A(x) = { k in A | gpf(k) <=x } where gpf(k) denotes the greatest prime factor of k and let m(x)(A) = prod(p<=x, (1-1/p))*sum(k in A(x), 1/k). If lim x ->infinity m(x)(A) exists = m(A), this limit is called "multiplicative density" of A (Erdős and Davenport, 1951). - Benoit Cloitre, Jun 12 2002

LINKS

T. D. Noe and William A. Tedeschi, Table of n, a(n) for n=1..10000 (first 1000 terms computed by T. D. Noe)

H. Davenport and P. Erdős, On sequences of positive integers, J. Indian Math. Soc. 15 (1951), pp. 19-24.

Eric Weisstein's World of Mathematics, Greatest Prime Factor

Eric Weisstein's World of Mathematics, Round Number

MATHEMATICA

gpf[n_] := FactorInteger[n][[-1, 1]]; A048098 = {}; For[n = 1, n <= 200, n++, If[ gpf[n] <= Sqrt[n], AppendTo[ A048098, n] ] ]; A048098 (* Jean-François Alcover, Jan 26 2012 *)

PROG

(PARI) for(n=1, 1000, if(vecmax(factor(n)[, 1])<=sqrt(n), print1(n, ", ")))

(Haskell)

a048098 n = a048098_list !! (n-1)

a048098_list = [x | x <- [1..], a006530 x ^ 2 <= x]

-- Reinhard Zumkeller, Oct 12 2011

CROSSREFS

Set union of A063539 and A001248.

Cf. A063538, A063762, A063763, A064052.

Sequence in context: A034043 A278517 A053443 * A122145 A034030 A057109

Adjacent sequences:  A048095 A048096 A048097 * A048099 A048100 A048101

KEYWORD

easy,nonn,nice

AUTHOR

J. Lowell

EXTENSIONS

More terms from James A. Sellers, Apr 22 2000

Edited by Charles R Greathouse IV, Nov 08 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified January 21 13:55 EST 2018. Contains 297994 sequences.