login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A048098 Numbers k that are sqrt(k)-smooth: if p | k then p^2 <= k when p is prime. 52
1, 4, 8, 9, 12, 16, 18, 24, 25, 27, 30, 32, 36, 40, 45, 48, 49, 50, 54, 56, 60, 63, 64, 70, 72, 75, 80, 81, 84, 90, 96, 98, 100, 105, 108, 112, 120, 121, 125, 126, 128, 132, 135, 140, 144, 147, 150, 154, 160, 162, 165, 168, 169, 175, 176, 180, 182, 189, 192, 195 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

A006530(a(n))^2 <= a(n). - Reinhard Zumkeller, Oct 12 2011

This set (say S) has density d(S) = 1-log(2) and multiplicative density m(S) = 1-exp(-Gamma). Multiplicative density: let A be a set of numbers, A(x) = { k in A | gpf(k) <=x } where gpf(k) denotes the greatest prime factor of k and let m(x)(A) = Product_{p<=x} (1 - 1/p)*Sum_{k in A(x)} 1/k. If lim_{x->infinity} m(x)(A) exists = m(A), this limit is called "multiplicative density" of A (Erdős and Davenport, 1951). - Benoit Cloitre, Jun 12 2002

LINKS

T. D. Noe and William A. Tedeschi, Table of n, a(n) for n = 1..10000 (first 1000 terms computed by T. D. Noe)

H. Davenport and P. Erdős, On sequences of positive integers, J. Indian Math. Soc. 15 (1951), pp. 19-24.

Eric Weisstein's World of Mathematics, Greatest Prime Factor

Eric Weisstein's World of Mathematics, Round Number

MATHEMATICA

gpf[n_] := FactorInteger[n][[-1, 1]]; A048098 = {}; For[n = 1, n <= 200, n++, If[ gpf[n] <= Sqrt[n], AppendTo[ A048098, n] ] ]; A048098 (* Jean-François Alcover, Jan 26 2012 *)

PROG

(PARI)

print1(1, ", "); for(n=2, 1000, if(vecmax(factor(n)[, 1])<=sqrt(n), print1(n, ", ")))

(Haskell)

a048098 n = a048098_list !! (n-1)

a048098_list = [x | x <- [1..], a006530 x ^ 2 <= x]

-- Reinhard Zumkeller, Oct 12 2011

(Python)

from sympy import factorint

def ok(n):

    return n == 1 if n < 2 else max(factorint(n))**2 <= n

print([k for k in range(196) if ok(k)]) # Michael S. Branicky, Dec 22 2021

CROSSREFS

Set union of A063539 and A001248.

Cf. A006530, A063538, A063762, A063763, A064052.

The following are all different versions of sqrt(n)-smooth numbers: A048098, A063539, A064775, A295084, A333535, A333536.

Sequence in context: A034043 A278517 A053443 * A322109 A122145 A328014

Adjacent sequences:  A048095 A048096 A048097 * A048099 A048100 A048101

KEYWORD

easy,nonn,nice

AUTHOR

J. Lowell

EXTENSIONS

More terms from James A. Sellers, Apr 22 2000

Edited by Charles R Greathouse IV, Nov 08 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 16 16:06 EDT 2022. Contains 353706 sequences. (Running on oeis4.)