login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A048098
Numbers k that are sqrt(k)-smooth: if p | k then p^2 <= k when p is prime.
54
1, 4, 8, 9, 12, 16, 18, 24, 25, 27, 30, 32, 36, 40, 45, 48, 49, 50, 54, 56, 60, 63, 64, 70, 72, 75, 80, 81, 84, 90, 96, 98, 100, 105, 108, 112, 120, 121, 125, 126, 128, 132, 135, 140, 144, 147, 150, 154, 160, 162, 165, 168, 169, 175, 176, 180, 182, 189, 192, 195
OFFSET
1,2
COMMENTS
A006530(a(n))^2 <= a(n). - Reinhard Zumkeller, Oct 12 2011
This set (say S) has density d(S) = 1-log(2) and multiplicative density m(S) = 1-exp(-Gamma). Multiplicative density: let A be a set of numbers, A(x) = { k in A | gpf(k) <=x } where gpf(k) denotes the greatest prime factor of k and let m(x)(A) = Product_{p<=x} (1 - 1/p)*Sum_{k in A(x)} 1/k. If lim_{x->infinity} m(x)(A) exists = m(A), this limit is called "multiplicative density" of A (Erdős and Davenport, 1951). - Benoit Cloitre, Jun 12 2002
LINKS
T. D. Noe and William A. Tedeschi, Table of n, a(n) for n = 1..10000 (first 1000 terms computed by T. D. Noe)
H. Davenport and P. Erdős, On sequences of positive integers, J. Indian Math. Soc. 15 (1951), pp. 19-24.
Eric Weisstein's World of Mathematics, Greatest Prime Factor
Eric Weisstein's World of Mathematics, Round Number
MATHEMATICA
gpf[n_] := FactorInteger[n][[-1, 1]]; A048098 = {}; For[n = 1, n <= 200, n++, If[ gpf[n] <= Sqrt[n], AppendTo[ A048098, n] ] ]; A048098 (* Jean-François Alcover, Jan 26 2012 *)
PROG
(PARI)
print1(1, ", "); for(n=2, 1000, if(vecmax(factor(n)[, 1])<=sqrt(n), print1(n, ", ")))
(Haskell)
a048098 n = a048098_list !! (n-1)
a048098_list = [x | x <- [1..], a006530 x ^ 2 <= x]
-- Reinhard Zumkeller, Oct 12 2011
(Python)
from sympy import factorint
def ok(n):
return n == 1 if n < 2 else max(factorint(n))**2 <= n
print([k for k in range(196) if ok(k)]) # Michael S. Branicky, Dec 22 2021
(Python)
from math import isqrt
from sympy import primepi
def A048098(n):
def f(x): return int(n+sum(primepi(x//i)-primepi(i) for i in range(1, isqrt(x)+1)))
def bisection(f, kmin=0, kmax=1):
while f(kmax) > kmax: kmax <<= 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
return bisection(f) # Chai Wah Wu, Sep 01 2024
CROSSREFS
Set union of A063539 and A001248.
The following are all different versions of sqrt(n)-smooth numbers: A048098, A063539, A064775, A295084, A333535, A333536.
Sequence in context: A053443 A376715 A360070 * A322109 A122145 A328014
KEYWORD
easy,nonn,nice
AUTHOR
EXTENSIONS
More terms from James A. Sellers, Apr 22 2000
Edited by Charles R Greathouse IV, Nov 08 2010
STATUS
approved