login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A053443
x^2 + y^2 does not take on all possible values mod n.
3
4, 8, 9, 12, 16, 18, 20, 24, 27, 28, 32, 36, 40, 44, 45, 48, 49, 52, 54, 56, 60, 63, 64, 68, 72, 76, 80, 81, 84, 88, 90, 92, 96, 98, 99, 100, 104, 108, 112, 116, 117, 120, 121, 124, 126, 128, 132, 135, 136, 140, 144, 147, 148, 152, 153, 156, 160, 162, 164, 168, 171
OFFSET
1,1
COMMENTS
Sequence gives values of n such there is not always a solution 1 < z < n to x^2 + y^2 = z (mod n). - Benoit Cloitre, Jan 04 2002; corrected by Carmine Suriano, Jun 19 2013
The asymptotic density of this sequence is 1- 3/(8*K^2) = 1 - (3/4) * A243379 = 0.35791..., where K is the Landau-Ramanujan constant (A064533). - Amiram Eldar, Dec 19 2020
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
FORMULA
n divisible by p^2 where p = 2 or prime p == 3 (mod 4).
MATHEMATICA
Select[Range[200], AnyTrue[FactorInteger[#], Mod[First[#1], 4] > 1 && Last[#1] > 1 &] &] (* Amiram Eldar, Dec 19 2020 *)
PROG
(PARI) is(n)=my(v=vectorsmall(n, i, 1)); for(x=0, n\2, for(y=0, x, v[(x^2+y^2)%n+1]=0)); vecmax(v) \\ Charles R Greathouse IV, Jun 19 2013
(PARI) is(n)=forprime(p=2, 97, my(o=valuation(n, p)); if(o, if(o>1&&p%4>1, return(1)); n/=p^o)); my(f=factor(n)); for(i=1, #f[, 1], if(f[i, 2]>1&&f[i, 1]%4>1, return(1))); 0 \\ Charles R Greathouse IV, Jun 19 2013
CROSSREFS
Complement of A240370.
Sequence in context: A359468 A034043 A278517 * A376715 A360070 A048098
KEYWORD
nonn
STATUS
approved