login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A053440 Number of k-simplices in the first derived complex of the standard triangulation of an n-simplex. Equivalently, T(n,k) is the number of ascending chains of length k+1 of nonempty subsets of the set {1, 2, ..., n+1}. 6
1, 3, 2, 7, 12, 6, 15, 50, 60, 24, 31, 180, 390, 360, 120, 63, 602, 2100, 3360, 2520, 720, 127, 1932, 10206, 25200, 31920, 20160, 5040, 255, 6050, 46620, 166824, 317520, 332640, 181440, 40320, 511, 18660, 204630, 1020600, 2739240, 4233600, 3780000 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

T(n,k) is the number of length k+1 sequences of nonempty mutually disjoint subsets of {1,2,...,n+1}.  The e.g.f. for the column corresponding to k is exp(x)*(exp(x)-1)^(k+1). - Geoffrey Critzer, Dec 20 2011

LINKS

G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened

F. Brenti and V. Welker, f-vectors of barycentric subdivisions Math. Z., 259(4), 849-865, 2008.

Wikipedia, Barycentric subdivision

FORMULA

T(0,k) = delta(0,k), T(n,k) = delta(0,k) + (k+1)(T(n-1,k-1) + (k+2)T(n-1,k)).

E.g.f.: exp(x)*(exp(x)-1)/(1-y*(exp(x)-1)). - Vladeta Jovovic, Apr 13 2003

T(n,k) = Sum_{i = 0..n} binomial(n+1,i+1)*(k+1)!*Stirling2(i+1,k+1) = (k+1)!*Stirling2(n+2,k+2) (Brenti and Welker). Row sums are A002050. - Peter Bala, Jul 12 2014

EXAMPLE

T(2,1) = 12 because there are 12 such length 2 sequences of subsets of {1,2,3}: ({1},{2}), ({1},{3}), ({2},{3}), ({1},{2,3}), ({2},{1,3}), ({3},{1,2}) with two orderings for each. - Geoffrey Critzer, Dec 20 2011

Triangle begins:

   1

   3      2

   7     12      6

  15     50     60     24

  31    180    390    360    120

MAPLE

with(combinat):

a := (n, k) -> (k+1)!*stirling2(n+2, k+2):

seq(print(seq(a(n, k), k = 0..n)), n = 0..10);

MATHEMATICA

nn = 5; a = Exp[ x] - 1 ; f[list_] := Select[list, # > 0 &]; Map[f, Transpose[Table[Drop[Range[0, nn]!CoefficientList[Series[a^k  Exp[x], {x, 0, nn}], x], 1], {k, 1, 5}]]] // Grid (* Geoffrey Critzer, Dec 20 2011 *)

Table[(k+1)!*StirlingS2[n+2, k+2], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Nov 19 2017 *)

PROG

(PARI) for(n=0, 10, for(k=0, n, print1((k+1)!*stirling(n+2, k+2, 2), ", "))) \\ G. C. Greubel, Nov 19 2017

CROSSREFS

Cf. A028246.

Cf. A002050 (row sums), A019538.

Sequence in context: A099329 A182871 A143329 * A329724 A143332 A255919

Adjacent sequences:  A053437 A053438 A053439 * A053441 A053442 A053443

KEYWORD

nonn,easy,tabl,nice

AUTHOR

Rob Arthan, Jan 12 2000

EXTENSIONS

More terms from James A. Sellers, Jan 14 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 21 12:13 EDT 2020. Contains 337271 sequences. (Running on oeis4.)