login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of k-simplices in the first derived complex of the standard triangulation of an n-simplex. Equivalently, T(n,k) is the number of ascending chains of length k+1 of nonempty subsets of the set {1, 2, ..., n+1}.
6

%I #27 Nov 19 2017 01:58:00

%S 1,3,2,7,12,6,15,50,60,24,31,180,390,360,120,63,602,2100,3360,2520,

%T 720,127,1932,10206,25200,31920,20160,5040,255,6050,46620,166824,

%U 317520,332640,181440,40320,511,18660,204630,1020600,2739240,4233600,3780000

%N Number of k-simplices in the first derived complex of the standard triangulation of an n-simplex. Equivalently, T(n,k) is the number of ascending chains of length k+1 of nonempty subsets of the set {1, 2, ..., n+1}.

%C T(n,k) is the number of length k+1 sequences of nonempty mutually disjoint subsets of {1,2,...,n+1}. The e.g.f. for the column corresponding to k is exp(x)*(exp(x)-1)^(k+1). - _Geoffrey Critzer_, Dec 20 2011

%H G. C. Greubel, <a href="/A053440/b053440.txt">Table of n, a(n) for the first 50 rows, flattened</a>

%H F. Brenti and V. Welker, <a href="http://dx.doi.org/10.1007/s00209-007-0251-z">f-vectors of barycentric subdivisions</a> Math. Z., 259(4), 849-865, 2008.

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Barycentric_subdivision">Barycentric subdivision</a>

%F T(0,k) = delta(0,k), T(n,k) = delta(0,k) + (k+1)(T(n-1,k-1) + (k+2)T(n-1,k)).

%F E.g.f.: exp(x)*(exp(x)-1)/(1-y*(exp(x)-1)). - _Vladeta Jovovic_, Apr 13 2003

%F T(n,k) = Sum_{i = 0..n} binomial(n+1,i+1)*(k+1)!*Stirling2(i+1,k+1) = (k+1)!*Stirling2(n+2,k+2) (Brenti and Welker). Row sums are A002050. - _Peter Bala_, Jul 12 2014

%e T(2,1) = 12 because there are 12 such length 2 sequences of subsets of {1,2,3}: ({1},{2}), ({1},{3}), ({2},{3}), ({1},{2,3}), ({2},{1,3}), ({3},{1,2}) with two orderings for each. - _Geoffrey Critzer_, Dec 20 2011

%e Triangle begins:

%e 1

%e 3 2

%e 7 12 6

%e 15 50 60 24

%e 31 180 390 360 120

%p with(combinat):

%p a := (n, k) -> (k+1)!*stirling2(n+2, k+2):

%p seq(print(seq(a(n, k), k = 0..n)), n = 0..10);

%t nn = 5; a = Exp[ x] - 1 ; f[list_] := Select[list, # > 0 &];Map[f, Transpose[Table[Drop[Range[0, nn]!CoefficientList[Series[a^k Exp[x], {x, 0, nn}],x], 1], {k, 1, 5}]]] // Grid (* _Geoffrey Critzer_, Dec 20 2011 *)

%t Table[(k+1)!*StirlingS2[n+2,k+2], {n,0,10}, {k,0,n}]//Flatten (* _G. C. Greubel_, Nov 19 2017 *)

%o (PARI) for(n=0,10, for(k=0,n, print1((k+1)!*stirling(n+2,k+2,2), ", "))) \\ _G. C. Greubel_, Nov 19 2017

%Y Cf. A028246.

%Y Cf. A002050 (row sums), A019538.

%K nonn,easy,tabl,nice

%O 0,2

%A _Rob Arthan_, Jan 12 2000

%E More terms from _James A. Sellers_, Jan 14 2000