login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A365227
Numerator of Sum_{1<=j<=k<=n, gcd(j,k)=1} 1/(j*k).
2
1, 3, 2, 7, 11, 59, 33, 737, 631, 1973, 439, 4967, 3595, 7283, 289433, 891067, 82391, 647449, 2764637, 160300109, 119168603, 1923477, 19032303, 442903921, 278705461, 1155909107, 84109239017, 255355122859, 632225777, 203232858383, 1110186816983, 81194050820693
OFFSET
1,2
MAPLE
A365227 := proc(n)
local j, k, s; s := 0;
for j from 1 to n do
for k from j to n do
if gcd(j, k) = 1 then s := s + 1/(j*k);
end if;
end do;
end do;
numer(s);
end proc;
seq(A365227(n), n = 1..20);
# second Maple program:
a:= n-> numer(add(add(`if`(igcd(j, k)=1, 1/j, 0), j=1..k)/k, k=1..n)):
seq(a(n), n=1..45); # Alois P. Heinz, Aug 28 2023
PROG
(Python)
from math import gcd
from fractions import Fraction
def A365227(n): return sum(sum(Fraction(1, j) for j in range(1, k+1) if gcd(j, k)==1)/k for k in range(1, n+1)).numerator # Chai Wah Wu, Aug 29 2023
(PARI) a(n) = numerator(sum(j=1, n, sum(k=j, n, if (gcd(j, k)==1, 1/(j*k))))); \\ Michel Marcus, Aug 28 2023
CROSSREFS
Cf. A365228 (denominator of this sum).
Sequence in context: A099329 A182871 A143329 * A053440 A329724 A143332
KEYWORD
nonn,frac
AUTHOR
Franz Vrabec, Aug 27 2023
STATUS
approved