login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A053441
Moments of generalized Motzkin paths.
1
1, 0, 4, 4, 16, 24, 71, 128, 328, 650, 1552, 3232, 7437, 15904, 35884, 77840, 173792, 379896, 843411, 1851264, 4097552, 9014038, 19918944, 43871360, 96860441, 213472064, 471086932, 1038595100, 2291372912, 5052682904, 11145821407, 24580005376, 54217564504, 119573069218
OFFSET
2,3
LINKS
R. A. Sulanke, Moments of generalized Motzkin paths, J. Integer Sequences, Vol. 3 (2000), #00.1.
FORMULA
G.f.: x^2*(2*x^3+1)/((1+x)*(1+x-x^2)*(1-2*x-x^3)).
a(n) = 4*a(n-2) + 2*a(n-3) - a(n-6); a(2)=1, a(3)=0, a(4)=4, a(5)=4, a(6)=16, a(7)=24. - Harvey P. Dale, Oct 24 2011
MATHEMATICA
Drop[CoefficientList[Series[x^2(2x^3+1)/((1+x)(1+x-x^2)(1-2x-x^3)), {x, 0, 40}], x], 2] (* or *) LinearRecurrence[{0, 4, 2, 0, 0, -1}, {1, 0, 4, 4, 16, 24}, 40] (* Harvey P. Dale, Oct 24 2011 *)
PROG
(PARI) x='x+O('x^30); Vec(x^2*(2*x^3+1)/((1+x)*(1+x-x^2)*(1-2*x-x^3))) \\ G. C. Greubel, May 26 2018
(Magma) I:=[1, 0, 4, 4, 16, 24]; [n le 6 select I[n] else 4*Self(n-2) + 2*Self(n-3) -Self(n-6): n in [1..30]]; // G. C. Greubel, May 26 2018
CROSSREFS
Sequence in context: A223819 A082649 A156232 * A065732 A092959 A330054
KEYWORD
nonn,easy,nice
AUTHOR
N. J. A. Sloane, Jan 12 2000
EXTENSIONS
More terms from Reiner Martin, Oct 13 2002
STATUS
approved