|
|
A092959
|
|
Least square of the form 'product of n successive terms of an arithmetic progression + 1', or 0 if no such square exists.
|
|
1
|
|
|
4, 4, 16, 25, 121, 5041, 5041, 0, 2504902401, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Conjecture: No term is zero.
All terms in the progression are required to be positive. Zero values are highly probable but unproved. I have checked for each a(n) up to 10^(3*n+8). - David Wasserman, Aug 11 2006
|
|
LINKS
|
Table of n, a(n) for n=1..24.
|
|
EXAMPLE
|
a(3) = 16 = 1*3*5 + 1, a(4) = 25 = 1*2*3*4 + 1.
|
|
PROG
|
(PARI) f(n, x, y) = prod(i = 0, n - 1, x + i*y) + 1; for (n = 8, 24, LIMIT = 10^(3*n + 8); x = 1; y = 1; num = f(n, 1, 1); while (num < LIMIT, while (num < LIMIT, if (issquare(num), print([n, num])); y++; num = f(n, x, y)); x++; y = 1; num = f(n, x, y))); - David Wasserman, Aug 11 2006
|
|
CROSSREFS
|
Sequence in context: A156232 A053441 A065732 * A330054 A183433 A322039
Adjacent sequences: A092956 A092957 A092958 * A092960 A092961 A092962
|
|
KEYWORD
|
less,nonn
|
|
AUTHOR
|
Amarnath Murthy, Mar 25 2004
|
|
EXTENSIONS
|
More terms from David Wasserman, Aug 11 2006
|
|
STATUS
|
approved
|
|
|
|