login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A092956
a(n) = (2*n+2)!/((n+2)*n!).
8
1, 8, 90, 1344, 25200, 570240, 15135120, 461260800, 15878903040, 609493248000, 25812039052800, 1195656969830400, 60138698780160000, 3264143527636992000, 190165504623494400000, 11836497605427855360000, 783921372659482337280000
OFFSET
0,2
LINKS
FORMULA
a(n) = Sum_{k=1..n+1} Gamma(n+1+k)/Gamma(k). - Bruno Berselli, Mar 06 2013
Let E(x) = Sum_{n>=0} a(n)*x^(2*n)/n!, then E(x) = 2- E(0,x), where E(k,x) = 1 - x^2*(k+1)/( x^2*(k+1) + (k + 1 -x^2)*(k + 2 -x^2)/E(k+1,x) ); (continued fraction). - Sergei N. Gladkovskii, Oct 21 2013
a(n) = A092582(2n+2, n+1). - Alois P. Heinz, Jun 19 2017
From G. C. Greubel, Aug 11 2022: (Start)
G.f.: Hypergeometric2F1([2,2,3/2], [3], 4*x).
E.g.f.: 4*x*Hypergeometric2F1([5/2,3], [4], 4*x) + Hypergeometric2F1([3/2,2], [3], 4*x). (End)
MAPLE
seq((2*n+2)!/(n+2)/n!, n=0..17); # Emeric Deutsch
a:=n->sum(mul (j-k+n, j=1..n), k=1..n): seq(a(n), n=1..17); # Zerinvary Lajos, Jun 04 2007
MATHEMATICA
Table[(2n+2)!/((n+2) n!), {n, 0, 16}] (* Bruno Berselli, Mar 06 2013 *)
PROG
(Maxima) A092956(n):=(2*n+2)!/((n+2)*n!)$ makelist(A092956(n), n, 0, 30); /* Martin Ettl, Nov 05 2012 */
(Magma) [Factorial(n+1)*Binomial(2*n+2, n): n in [0..20]]; // G. C. Greubel, Aug 11 2022
(SageMath) [factorial(n+1)*binomial(2*n+2, n) for n in (0..20)] # G. C. Greubel, Aug 11 2022
CROSSREFS
Row sums of A105725.
Cf. A092582.
Sequence in context: A323960 A187667 A331512 * A345876 A295623 A319174
KEYWORD
easy,nonn
AUTHOR
Amarnath Murthy, Mar 25 2004
EXTENSIONS
More terms from Emeric Deutsch, Apr 18 2005
Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, May 27 2007
More terms from Zerinvary Lajos, Jun 04 2007
STATUS
approved