OFFSET
0,2
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..350
FORMULA
a(n) = Sum_{k=1..n+1} Gamma(n+1+k)/Gamma(k). - Bruno Berselli, Mar 06 2013
Let E(x) = Sum_{n>=0} a(n)*x^(2*n)/n!, then E(x) = 2- E(0,x), where E(k,x) = 1 - x^2*(k+1)/( x^2*(k+1) + (k + 1 -x^2)*(k + 2 -x^2)/E(k+1,x) ); (continued fraction). - Sergei N. Gladkovskii, Oct 21 2013
a(n) = A092582(2n+2, n+1). - Alois P. Heinz, Jun 19 2017
From G. C. Greubel, Aug 11 2022: (Start)
G.f.: Hypergeometric2F1([2,2,3/2], [3], 4*x).
E.g.f.: 4*x*Hypergeometric2F1([5/2,3], [4], 4*x) + Hypergeometric2F1([3/2,2], [3], 4*x). (End)
MAPLE
seq((2*n+2)!/(n+2)/n!, n=0..17); # Emeric Deutsch
a:=n->sum(mul (j-k+n, j=1..n), k=1..n): seq(a(n), n=1..17); # Zerinvary Lajos, Jun 04 2007
MATHEMATICA
Table[(2n+2)!/((n+2) n!), {n, 0, 16}] (* Bruno Berselli, Mar 06 2013 *)
PROG
(Maxima) A092956(n):=(2*n+2)!/((n+2)*n!)$ makelist(A092956(n), n, 0, 30); /* Martin Ettl, Nov 05 2012 */
(Magma) [Factorial(n+1)*Binomial(2*n+2, n): n in [0..20]]; // G. C. Greubel, Aug 11 2022
(SageMath) [factorial(n+1)*binomial(2*n+2, n) for n in (0..20)] # G. C. Greubel, Aug 11 2022
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Amarnath Murthy, Mar 25 2004
EXTENSIONS
More terms from Emeric Deutsch, Apr 18 2005
Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, May 27 2007
More terms from Zerinvary Lajos, Jun 04 2007
STATUS
approved