Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #26 Aug 12 2022 00:34:15
%S 1,8,90,1344,25200,570240,15135120,461260800,15878903040,609493248000,
%T 25812039052800,1195656969830400,60138698780160000,
%U 3264143527636992000,190165504623494400000,11836497605427855360000,783921372659482337280000
%N a(n) = (2*n+2)!/((n+2)*n!).
%H G. C. Greubel, <a href="/A092956/b092956.txt">Table of n, a(n) for n = 0..350</a>
%F a(n) = Sum_{k=1..n+1} Gamma(n+1+k)/Gamma(k). - _Bruno Berselli_, Mar 06 2013
%F Let E(x) = Sum_{n>=0} a(n)*x^(2*n)/n!, then E(x) = 2- E(0,x), where E(k,x) = 1 - x^2*(k+1)/( x^2*(k+1) + (k + 1 -x^2)*(k + 2 -x^2)/E(k+1,x) ); (continued fraction). - _Sergei N. Gladkovskii_, Oct 21 2013
%F a(n) = A092582(2n+2, n+1). - _Alois P. Heinz_, Jun 19 2017
%F From _G. C. Greubel_, Aug 11 2022: (Start)
%F G.f.: Hypergeometric2F1([2,2,3/2], [3], 4*x).
%F E.g.f.: 4*x*Hypergeometric2F1([5/2,3], [4], 4*x) + Hypergeometric2F1([3/2,2], [3], 4*x). (End)
%p seq((2*n+2)!/(n+2)/n!,n=0..17); # _Emeric Deutsch_
%p a:=n->sum(mul (j-k+n,j=1..n),k=1..n): seq(a(n),n=1..17); # _Zerinvary Lajos_, Jun 04 2007
%t Table[(2n+2)!/((n+2) n!), {n, 0, 16}] (* _Bruno Berselli_, Mar 06 2013 *)
%o (Maxima) A092956(n):=(2*n+2)!/((n+2)*n!)$ makelist(A092956(n),n,0,30); /* _Martin Ettl_, Nov 05 2012 */
%o (Magma) [Factorial(n+1)*Binomial(2*n+2, n): n in [0..20]]; // _G. C. Greubel_, Aug 11 2022
%o (SageMath) [factorial(n+1)*binomial(2*n+2,n) for n in (0..20)] # _G. C. Greubel_, Aug 11 2022
%Y Row sums of A105725.
%Y Cf. A092582.
%K easy,nonn
%O 0,2
%A _Amarnath Murthy_, Mar 25 2004
%E More terms from _Emeric Deutsch_, Apr 18 2005
%E Edited by _N. J. A. Sloane_ at the suggestion of _Andrew S. Plewe_, May 27 2007
%E More terms from _Zerinvary Lajos_, Jun 04 2007