login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A345876
a(n) = Sum_{k=0..n} binomial(2*n, n-k) * k^n.
1
1, 1, 8, 90, 1408, 28350, 697344, 20264244, 679313408, 25805186550, 1095482736640, 51397070440716, 2640925289349120, 147491783753286700, 8895880971425939456, 576279075821454657000, 39905347440408027725824, 2941534126495441574472870, 229966392623413457628168192
OFFSET
0,3
LINKS
FORMULA
a(n) ~ 2^(2*n + 1/2) * r^(n+1) * n^n / (sqrt(1 + r^2) * exp(n) * (1 - r^2)^n), where r = 0.647918229029602749602061258113970414114660380467168496836586... is the positive root of the equation (1 + r) = (1 - r)*exp(1/r).
MATHEMATICA
Join[{1}, Table[Sum[Binomial[2*n, n-k]*k^n, {k, 0, n}], {n, 1, 20}]]
PROG
(PARI) a(n) = sum(k=0, n, binomial(2*n, n-k) * k^n); \\ Michel Marcus, Oct 03 2021
CROSSREFS
Sequence in context: A187667 A331512 A092956 * A295623 A319174 A034667
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Oct 03 2021
STATUS
approved