login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156232
a(n) is the number of induced subgraphs with odd number of edges in the cycle graph C(n).
4
0, 4, 4, 16, 24, 64, 112, 256, 480, 1024, 1984, 4096, 8064, 16384, 32512, 65536, 130560, 262144, 523264, 1048576, 2095104, 4194304, 8384512, 16777216, 33546240, 67108864, 134201344, 268435456, 536838144, 1073741824, 2147418112
OFFSET
2,2
COMMENTS
Essentially the same sequence (see A204696) appears in the Cusick-Stanica paper.
LINKS
Thomas W. Cusick, and Pantelimon Stanica, Fast evaluation, weights and nonlinearity of rotation-symmetric functions, Discrete Math. 258 (2002), no. 1-3, 289-301.
FORMULA
a(n) = 2^(n-1) - 2^(n/2) if n is even, 2^(n-1) otherwise.
G.f.: 4*x^3*(1-x)/((1-2*x)*(1-2*x^2)). a(n)=2*a(n-1)+2*a(n-2)-4*a(n-3). - R. J. Mathar, Feb 10 2009
E.g.f.: 2*(exp(2*x) - cosh(sqrt(2)*x)). - G. C. Greubel, Aug 26 2015
MATHEMATICA
RecurrenceTable[{a[n]== 2*a[n-1] + 2*a[n-2] - 4*a[n-3], a[0]==0, a[1]==4, a[2]==4}, a, {n, 0, 50}] (* G. C. Greubel, Aug 26 2015 *)
LinearRecurrence[{2, 2, -4}, {0, 4, 4}, 40] (* Vincenzo Librandi, Aug 27 2015 *)
PROG
(PARI) Vec(4*x^3*(1-x)/((1-2*x)*(1-2*x^2)) + O(x^40)) \\ Michel Marcus, Aug 26 2015
CROSSREFS
Sequence in context: A321677 A223819 A082649 * A053441 A065732 A092959
KEYWORD
nonn
AUTHOR
Alessandro Cosentino (cosenal(AT)gmail.com), Feb 06 2009
EXTENSIONS
More terms from R. J. Mathar, Feb 10 2009
STATUS
approved