OFFSET
2,2
COMMENTS
Essentially the same sequence (see A204696) appears in the Cusick-Stanica paper.
LINKS
G. C. Greubel, Table of n, a(n) for n = 2..1000
Thomas W. Cusick, and Pantelimon Stanica, Fast evaluation, weights and nonlinearity of rotation-symmetric functions, Discrete Math. 258 (2002), no. 1-3, 289-301.
Index entries for linear recurrences with constant coefficients, signature (2, 2, -4).
FORMULA
a(n) = 2^(n-1) - 2^(n/2) if n is even, 2^(n-1) otherwise.
G.f.: 4*x^3*(1-x)/((1-2*x)*(1-2*x^2)). a(n)=2*a(n-1)+2*a(n-2)-4*a(n-3). - R. J. Mathar, Feb 10 2009
E.g.f.: 2*(exp(2*x) - cosh(sqrt(2)*x)). - G. C. Greubel, Aug 26 2015
MATHEMATICA
RecurrenceTable[{a[n]== 2*a[n-1] + 2*a[n-2] - 4*a[n-3], a[0]==0, a[1]==4, a[2]==4}, a, {n, 0, 50}] (* G. C. Greubel, Aug 26 2015 *)
LinearRecurrence[{2, 2, -4}, {0, 4, 4}, 40] (* Vincenzo Librandi, Aug 27 2015 *)
PROG
(PARI) Vec(4*x^3*(1-x)/((1-2*x)*(1-2*x^2)) + O(x^40)) \\ Michel Marcus, Aug 26 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Alessandro Cosentino (cosenal(AT)gmail.com), Feb 06 2009
EXTENSIONS
More terms from R. J. Mathar, Feb 10 2009
STATUS
approved