login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A321677
Number of non-isomorphic set multipartitions (multisets of sets) of weight n with no singletons.
2
1, 0, 1, 1, 4, 4, 16, 22, 70, 132, 375, 848, 2428, 6256, 18333, 52560, 161436, 500887, 1624969, 5384625, 18438815, 64674095, 233062429, 859831186, 3248411250, 12545820860, 49508089411, 199410275018, 819269777688, 3430680180687, 14633035575435, 63535672197070
OFFSET
0,5
COMMENTS
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.
LINKS
EXAMPLE
Non-isomorphic representatives of the a(2) = 1 through a(6) = 16 set multipartitions:
{{1,2}} {{1,2,3}} {{1,2,3,4}} {{1,2,3,4,5}} {{1,2,3,4,5,6}}
{{1,2},{1,2}} {{1,2},{3,4,5}} {{1,2,3},{1,2,3}}
{{1,2},{3,4}} {{1,4},{2,3,4}} {{1,2},{3,4,5,6}}
{{1,3},{2,3}} {{2,3},{1,2,3}} {{1,2,3},{4,5,6}}
{{1,2,5},{3,4,5}}
{{1,3,4},{2,3,4}}
{{1,5},{2,3,4,5}}
{{3,4},{1,2,3,4}}
{{1,2},{1,2},{1,2}}
{{1,2},{1,3},{2,3}}
{{1,2},{3,4},{3,4}}
{{1,2},{3,4},{5,6}}
{{1,2},{3,5},{4,5}}
{{1,3},{2,3},{2,3}}
{{1,3},{2,4},{3,4}}
{{1,4},{2,4},{3,4}}
PROG
(PARI)
WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, (-1)^(n-1)/n))))-1, -#v)}
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
K(q, t, k)={WeighT(Vec(sum(j=1, #q, my(g=gcd(t, q[j])); g*x^(q[j]/g)) + O(x*x^k), -k)) - Vec(sum(j=1, #q, if(t%q[j]==0, q[j])) + O(x*x^k), -k)}
a(n)={if(n==0, 1, my(s=0); forpart(q=n, my(g=sum(t=1, n, subst(x*Ser(K(q, t, n\t)/t), x, x^t) )); s+=permcount(q)*polcoef(exp(g), n)); s/n!)} \\ Andrew Howroyd, Jan 16 2024
KEYWORD
nonn
AUTHOR
Gus Wiseman, Nov 16 2018
EXTENSIONS
Terms a(11) and beyond from Andrew Howroyd, Sep 01 2019
STATUS
approved