login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156233
A symmetrical recursion triangular sequence: m=4; e(n,k,m)= (2* k + m - 1)e(n - 1, k, m) + (m*n - 2*k + 1 - m)e(n - 1, k - 1, m); t(n,k)=e(n, k, m) + e(n, n - k, m).
0
2, 1, 1, 1, 6, 1, 1, 37, 37, 1, 1, 226, 606, 226, 1, 1, 1565, 7972, 7972, 1565, 1, 1, 13514, 102407, 187824, 102407, 13514, 1, 1, 150753, 1445555, 3859373, 3859373, 1445555, 150753, 1, 1, 2105142, 23789060, 79955452, 115641606, 79955452, 23789060
OFFSET
0,1
COMMENTS
Row sums are:
{2, 2, 8, 76, 1060, 19076, 419668, 10911364, 327340916, 11129591140, 422924463316,...}.
Since m=2 is A060187, this recursion seems to be a MacMahon numbers level recursion.
FORMULA
m=4;e(n,k,m)= (2*k + m - 1)e)n - 1, k, m) + (m*n - 2*k + 1 - m)e(n - 1, k - 1, m);
t(n,k)=e(n, k, m) + e(n, n - k, m).
EXAMPLE
{2},
{1, 1},
{1, 6, 1},
{1, 37, 37, 1},
{1, 226, 606, 226, 1},
{1, 1565, 7972, 7972, 1565, 1},
{1, 13514, 102407, 187824, 102407, 13514, 1},
{1, 150753, 1445555, 3859373, 3859373, 1445555, 150753, 1},
{1, 2105142, 23789060, 79955452, 115641606, 79955452, 23789060, 2105142, 1},
{1, 34850041, 457127618, 1813119912, 3259697998, 3259697998, 1813119912, 457127618, 34850041, 1},
{1, 656682190, 9977604269, 46096675274, 96031672538, 117399194772, 96031672538, 46096675274, 9977604269, 656682190, 1}
MATHEMATICA
Clear[e, n, k, m]; m = 4; e[n_, 0, m_] := 1;
e[n_, k_, m_] := 0 /; k >= n; e[n_, k_, 1] := 1 /; k >= n;
e[n_, k_, m_] := (2*k + m - 1)e[n - 1, k, m] + (m*n - 2*k + 1 - m)e[n - 1, k - 1, m];
Table[Table[e[n, k, m], {k, 0, n - 1}], {n, 1, 10}];
Flatten[%];
Table[Table[e[n, k, m] + e[n, n - k, m], {k, 0, n}], {n, 0, 10}];
Flatten[%]
CROSSREFS
Cf. A060187.
Sequence in context: A280491 A157118 A156186 * A251725 A292977 A295381
KEYWORD
nonn,tabl
AUTHOR
STATUS
approved