login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A157118
Triangle T(n, k) = f(n, k) + f(n, n-k), where f(n, k) = A001263(n*k+1, n-k+1) if k <= n otherwise A001263(n*(n-k)+1, k+1) and T(1, k) = 1, read by rows.
2
2, 1, 1, 1, 6, 1, 1, 27, 27, 1, 1, 88, 672, 88, 1, 1, 225, 9150, 9150, 225, 1, 1, 486, 98385, 395352, 98385, 486, 1, 1, 931, 1126951, 11748681, 11748681, 1126951, 931, 1, 1, 1632, 14600320, 402703120, 588593280, 402703120, 14600320, 1632, 1, 1, 2673, 201755880, 16093941435, 32251030119, 32251030119, 16093941435, 201755880, 2673, 1
OFFSET
0,1
FORMULA
T(n, k) = f(n, k) + f(n, n-k), where f(n, k) = A001263(n*k+1, n-k+1) if k <= n otherwise A001263(n*(n-k)+1, k+1) and T(1, k) = 1.
T(n, n-k) = T(n, k).
EXAMPLE
Triangle begins as:
2;
1, 1;
1, 6, 1;
1, 27, 27, 1;
1, 88, 672, 88, 1;
1, 225, 9150, 9150, 225, 1;
1, 486, 98385, 395352, 98385, 486, 1;
1, 931, 1126951, 11748681, 11748681, 1126951, 931, 1;
1, 1632, 14600320, 402703120, 588593280, 402703120, 14600320, 1632, 1;
MATHEMATICA
A001263[n_, k_]:= Binomial[n-1, k-1]*Binomial[n, k]/(n-k+1);
f[n_, k_]:= If[k<=n, A001263[n*k+1, n-k+1], A001263[n*(n-k)+1, k+1]];
T[n_, k_]:= If[n==1, 1, f[n, k] + f[n, n-k]];
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Jan 11 2022 *)
PROG
(Magma)
A001263:= func< n, k | Binomial(n-1, k-1)*Binomial(n, k)/(n-k+1) >;
f:= func< n, k | k le n select A001263(n*k+1, n-k+1) else A001263(n*(n-k)+1, k+1) >;
A157118:= func< n, k | n eq 1 select 1 else f(n, k) + f(n, n-k) >;
[A157118(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 11 2022
(Sage)
def A001263(n, k): return binomial(n-1, k-1)*binomial(n, k)/(n-k+1)
def f(n, k): return A001263(n*k+1, n-k+1) if (k<n+1) else A001263(n*(n-k)+1, k+1)
def A157118(n, k): return 1 if (n==1) else f(n, k) + f(n, n-k)
flatten([[A157118(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jan 11 2022
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Feb 23 2009
EXTENSIONS
Edited by G. C. Greubel, Jan 11 2022
STATUS
approved