login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A157114
Triangle T(n, k) = binomial(n*k, n-k) + binomial(n*(n-k), k), read by rows.
4
2, 1, 1, 1, 4, 1, 1, 9, 9, 1, 1, 16, 56, 16, 1, 1, 25, 225, 225, 25, 1, 1, 36, 771, 1632, 771, 36, 1, 1, 49, 2597, 9261, 9261, 2597, 49, 1, 1, 64, 9136, 52384, 71920, 52384, 9136, 64, 1, 1, 81, 33777, 320814, 525987, 525987, 320814, 33777, 81, 1, 1, 100, 129130, 2090540, 4326015, 4237520, 4326015, 2090540, 129130, 100, 1
OFFSET
0,1
FORMULA
T(n, k) = binomial(n*k, n-k) + binomial(n*(n-k), k).
Sum_{k=0..n} T(n,k) = 2*A099237(n). - G. C. Greubel, Mar 09 2021
EXAMPLE
Triangle begins as:
2;
1, 1;
1, 4, 1;
1, 9, 9, 1;
1, 16, 56, 16, 1;
1, 25, 225, 225, 25, 1;
1, 36, 771, 1632, 771, 36, 1;
1, 49, 2597, 9261, 9261, 2597, 49, 1;
1, 64, 9136, 52384, 71920, 52384, 9136, 64, 1;
1, 81, 33777, 320814, 525987, 525987, 320814, 33777, 81, 1;
1, 100, 129130, 2090540, 4326015, 4237520, 4326015, 2090540, 129130, 100, 1;
MAPLE
A157114:= (n, k) -> binomial(n*k, n-k) + binomial(n*(n-k), k);
seq(seq(A157114(n, k), k=0..n), n=0..12); # G. C. Greubel, Mar 09 2021
MATHEMATICA
T[n_, k_]:= Binomial[n*k, n-k], Binomial[n*(n-k), k];
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Mar 09 2021 *)
PROG
(Sage)
def A157114(n, k): return binomial(n*k, n-k) + binomial(n*(n-k), k)
flatten([[A157114(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 09 2021
(Magma)
A157114:= func< n, k | Binomial(n*k, n-k) + Binomial(n*(n-k), k) >;
[A157114(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 09 2021
CROSSREFS
Cf. A099237.
Sequence in context: A205552 A255707 A260757 * A156786 A156141 A174555
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Feb 23 2009
EXTENSIONS
Edited by G. C. Greubel, Mar 09 2021
STATUS
approved