login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A157113
Triangle, read by rows, T(n,k) = binomial(n*(n-k)*k, k) + binomial(n*(n-k)*k, n -k).
1
2, 1, 1, 1, 4, 1, 1, 21, 21, 1, 1, 232, 240, 232, 1, 1, 4865, 4495, 4495, 4865, 1, 1, 142536, 195708, 49608, 195708, 142536, 1, 1, 5245828, 12105429, 2024785, 2024785, 12105429, 5245828, 1, 1, 231917456, 927052864, 190858864, 21336000, 190858864, 927052864, 231917456, 1
OFFSET
0,1
COMMENTS
Row sums are: {2, 2, 6, 44, 706, 18722, 726098, 38752086, 2720994370, 241584879476, 26221233537242, ...}.
FORMULA
T(n,k) = binomial(n*(n-k)*k, k) + binomial(n*(n-k)*k, n-k).
EXAMPLE
Triangle begins as:
2;
1, 1;
1, 4, 1;
1, 21, 21, 1;
1, 232, 240, 232, 1;
1, 4865, 4495, 4495, 4865, 1;
1, 142536, 195708, 49608, 195708, 142536, 1;
1, 5245828, 12105429, 2024785, 2024785, 12105429, 5245828, 1;
MAPLE
b:=binomial; seq(seq( b(n*(n-k)*k, k) + b(n*(n-k)*k, n-k), k=0..n), n=0..10); # G. C. Greubel, Nov 29 2019
MATHEMATICA
Table[Binomial[n*(n-k)*k, k] + Binomial[n*(n-k)*k, n-k], {n, 0, 10}, {k, 0, n}]//Flatten
PROG
(PARI) my(b=binomial); T(n, k) = b(n*(n-k)*k, k) + b(n*(n-k)*k, n-k); \\ G. C. Greubel, Nov 29 2019
(Magma) B:=Binomial; [B(n*(n-k)*k, k) + B(n*(n-k)*k, n-k): k in [0..n], n in [0..10]]; // G. C. Greubel, Nov 29 2019
(Sage) b=binomial; [[b(n*(n-k)*k, k) + b(n*(n-k)*k, n-k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Nov 29 2019
(GAP) B:=Binomial;; Flat(List([0..10], n-> List([0..n], k-> B(n*(n-k)*k, k) + B(n*(n-k)*k, n-k) ))); # G. C. Greubel, Nov 29 2019
CROSSREFS
Sequence in context: A156786 A156141 A174555 * A214712 A213330 A139320
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Feb 23 2009
STATUS
approved